
PanTools
Release 3.4.0

Sandra Smit

Dec 01, 2022





CONTENTS

1 Licence 3

2 Publications 5

3 Functionalities 7

4 Requirements 9

5 Running the program 11

6 Contents 13

i



ii



PanTools, Release 3.4.0

PanTools is a toolkit for comparative analysis of large number of genomes. It is developed in the Bioinformatics Group
of Wageningen University, the Netherlands. Please cite the relevant publication(s) from the list of publications if you
use PanTools in your research.

CONTENTS 1



PanTools, Release 3.4.0

2 CONTENTS



CHAPTER

ONE

LICENCE

PanTools has been licensed under GNU GENERAL PUBLIC LICENSE version 3.

3

https://www.gnu.org/licenses/gpl-3.0.en.html


PanTools, Release 3.4.0

4 Chapter 1. Licence



CHAPTER

TWO

PUBLICATIONS

• PanTools: representation, storage and exploration of pan-genomic data.

• Efficient inference of homologs in large eukaryotic pan-proteomes

• Pan-genomic read mapping

• The Pectobacterium pangenome, with a focus on Pectobacterium brasiliense, shows a robust core and extensive
exchange of genes from a shared gene pool

• Pantools v3: functional annotation, classification, and phylogenomics

5

https://academic.oup.com/bioinformatics/article/32/17/i487/2450785
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2362-4
https://www.biorxiv.org/content/10.1101/813634v1
https://doi.org/10.1186/s12864-021-07583-5
https://doi.org/10.1186/s12864-021-07583-5
https://doi.org/10.1093/bioinformatics/btac506


PanTools, Release 3.4.0

6 Chapter 2. Publications



CHAPTER

THREE

FUNCTIONALITIES

PanTools currently provides these functionalities:

• Construction of a panproteome

• Adding new genomes to the pangenome

• Adding structural/functional annotations to the genomes

• Detecting homology groups based on similarity of proteins

• Optimization of homology grouping using BUSCO

• Read mapping

• Gene classification

• Phylogenetic methods

7



PanTools, Release 3.4.0

8 Chapter 3. Functionalities



CHAPTER

FOUR

REQUIREMENTS

• Java Virtual Machine version 1.8 or higher, Add path to the java executable to your OS path environment
variable.

• KMC: A disk-based k-mer counter, After downloading the appropriate version (linux, macos or windows), add
path to the kmc and kmc_tools executables to your OS path environment variable.

• MCL: The Markov Clustering Algorithm, After downloading and compiling the software, add path to the mcl
executable to your OS path environment variable.

For installing and configuring all required software, please see our Installing and configuring the required software
page.

9



PanTools, Release 3.4.0

10 Chapter 4. Requirements



CHAPTER

FIVE

RUNNING THE PROGRAM

Add the path to the java archive of PanTools, located in the pantools/target subdirectory, to the OS path environment
variable. Then run PanTools from the command line by:

$ java <JVM options> -jar pantools-3.4.0.jar <subcommand> <arguments>

Useful JVM options
- -server : To optimize JIT compilations for higher performance
- -Xmn(a number followed by m/g) : Minimum heap size in mega/giga bytes
- -Xmx(a number followed by m/g) : Maximum heap size in mega/giga bytes

11



PanTools, Release 3.4.0

12 Chapter 5. Running the program



CHAPTER

SIX

CONTENTS

6.1 Installing and configuring the required software

1. Download PanTools

2. Install Neo4j

3. Install dependencies, either manually or through conda.

For PanTools developers:

4. Installing pre-commit hooks

6.1.1 Download PanTools

The preferred option is to download the .jar file from https://git.wur.nl/bioinformatics/pantools/-/releases and put it in
a directory named “pantools/target”.

Alternatively, follow the installation and compilation instructions from the README.md file in the desired version
(e.g. https://git.wur.nl/bioinformatics/pantools/-/tree/v3.4.0).

Test if PanTools is executable:

$ java -jar /YOUR_FULL_PATH/pantools/target/pantools-3.4.0.jar

If the help page does not appear this (likely) means you don’t have a properly working Java version 8. Java is included
in the PanTools conda environment, please consider to first install the environment. To manually download Java, follow
the instructions at https://www.java.com/en/download.

Set PanTools alias

To avoid typing long command line arguments every time, we suggest setting an alias to your profile. Set an alias in
your ~/.bashrc using the following command. Always include the full path to PanTools’ .jar file.

If Java is set to your $PATH.

$ echo "alias pantools='java -Xms20g -Xmx50g -jar /YOUR_FULL_PATH/pantools/target/
→˓pantools-3.4.0.jar'" >> ~/.bashrc

If Java is not set to your $PATH, include the full path in the alias. Replace ‘YOUR_PATH’ 2x with the correct directory
structure.

13

https://git.wur.nl/bioinformatics/pantools/-/releases
https://git.wur.nl/bioinformatics/pantools/-/tree/v3.4.0
https://www.java.com/en/download


PanTools, Release 3.4.0

$ echo "alias pantools='/YOUR_PATH/jdk1.8.0_161/bin/java -Xms20g -Xmx50g -jar /YOUR_PATH/
→˓pantools/target/pantools-3.4.0.jar'" >> ~/.bashrc

Source your profile and test if the alias works.

$ source ~/.bashrc
pantools version

6.1.2 Install Neo4j

Although Neo4j is not needed for any of the PanTools functionalities, it is required to be able to start up a database and
use cypher queries. In the PanTools versions up to 3.2 we use Neo4j 3.5.3 libraries, whereas newer releases use Neo4j
3.5.30. Neo4j version 3.5.30 is compatible with all earlier PanTools versions.

Download the Neo4j 3.5.30 community edition from the Neo4j website or download the binaries directly from our
server.

$ wget http://www.bioinformatics.nl/pangenomics/tutorial/neo4j-community-3.5.30-unix.tar.
→˓gz
$ tar -xvzf neo4j-community-*

# Edit your ~/.bashrc to include Neo4j to your $PATH
$ echo "export PATH=/YOUR_PATH/neo4j-community-3.5.30/bin:\$PATH" >> ~/.bashrc #replace␣
→˓YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ neo4j status # test if Neo4j is executable

Official Neo4j 3.5 manual: https://neo4j.com/docs/operations-manual/3.5/

6.1.3 Dependencies

Some of PanTools functionalities require additional software to be installed. Installing every dependency will take
a considerate amount of time, therefore we highly recommend to use Mamba. Mamba efficiently manages Conda
environments allowing the installation of all required tools into a separate environment. Instructions for creating the
Mamba environment or installing the tools manually are found in the sections below.

Install dependencies using Conda

Instructions on how to install and use conda can be found in the conda manual page. Once conda is installed, we
suggest to install Mamba into the Conda base environment to enable much faster dependency solving.

To install every dependency, download pantools.yaml and include it in the installation command.

$ wget http://www.bioinformatics.nl/pangenomics/manual/pantools.yaml
$ conda install mamba -n base -c conda-forge
$ mamba env create -n pantools --file pantools.yaml

$ conda activate pantools # activate the environment before using PanTools
$ conda deactivate # deactivate when you are done

14 Chapter 6. Contents

https://neo4j.com/download-center/
http://www.bioinformatics.nl/pangenomics/tutorial/neo4j-community-3.5.30-unix.tar.gz
https://neo4j.com/docs/operations-manual/3.5/


PanTools, Release 3.4.0

Run the following commands when you do not want to install every dependency, but only specific ones for the analysis
that you’re interested in.

$ conda create -n pantools python=3.6 kmc=3.0 mcl # Creates an environment that is able␣
→˓to construct the pangenome and cluster protein sequences
$ conda install -n pantools mafft iqtree fasttree blast mash fastani busco=5.2.2 r-
→˓ggplot2 r-ape graphviz # include tools you want to install via conda

Manual installation of dependencies

All tools must be set to your $PATH so PanTools is able to use them on any location. The instructions below are based
on a linux machine.

Install KMC

PanTools requires KMC v2.3 or 3.0 for k-mer counting during the constructing of the pangenome graph. KMC v3.0
is fastest, but v2.3 should also be compatible with PanTools. The KMC3 binaries can be downloaded from https:
//github.com/refresh-bio/KMC/releases.

$ tar -xvzf KMC* #uncompress the KMC binaries

# Edit your ~/.bashrc to include KMC to your PATH
$ echo "export PATH=/YOUR_PATH/KMC/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the␣
→˓correct path on your computer
$ source ~/.bashrc
$ kmc # test if KMC is executable
$ kmc_tools # test if kmc_tools is executable

Install MCL

The MCL (Markov clustering) algorithm is required for the homology grouping of PanTools. The software can be
found on https://micans.org/mcl under License & software.

$ wget https://micans.org/mcl/src/mcl-14-137.tar.gz
$ tar -xvzf mcl-*
$ cd mcl-14-137
$ ./configure --prefix=/YOUR_PATH/mcl-14-137/shared #replace YOUR_PATH with the correct␣
→˓path on your computer
$ make install

# Edit your ~/.bashrc to include MCL to your PATH
$ echo "export PATH=/YOUR_PATH/mcl-14-137/bin/:\$PATH" >> ~/.bashrc #replace YOUR_PATH␣
→˓with the correct path on your computer
$ source ~/.bashrc
$ mcl -h # test if MCL is executable

6.1. Installing and configuring the required software 15

https://github.com/refresh-bio/KMC/releases
https://github.com/refresh-bio/KMC/releases
https://micans.org/mcl


PanTools, Release 3.4.0

Install BUSCO

BUSCO v3 to v5 can be run against the pangenome to estimate annotation completeness. The versions require a
different Python release and need to be installed in a different way. We suggest to install BUSCO v5, follow the
instructions at https://gitlab.com/ezlab/busco/.

Install FastTree

FastTree is used to infer approximately-maximum-likelihood phylogenetic trees from the alignments of nucleotide
or protein sequences which are extracted from the pangenome. An executable can be found on the FastTree website:
http://www.microbesonline.org/fasttree/.

$ wget http://www.microbesonline.org/fasttree/FastTree
$ chmod +x FastTree
$ ./FastTree # test if FastTree is executable

# Edit your ~/.bashrc to include FastTree to your PATH
$ echo "export PATH=/YOUR_PATH:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct␣
→˓path on your computer
$ source ~/.bashrc

Install R

R and some additional R packages are required to execute R scripts (files with .R extension) that create plots and
construct Neighbor-Joining phylogenies. In most cases, R is already installed on a server. If this is not the case, install
it through the instructions on the website https://cran.r-project.org/, or compile it by using following steps.

mkdir R
mkdir R/R_LIBS
cd R
wget https://cran.r-project.org/src/base/R-4/R-4.0.2.tar.gz #version number might have␣
→˓changed already
tar -xvf R-4.0.2.tar.gz
cd R-4.0.2/
./configure --prefix=/YOUR_PATH/R/ #replace YOUR_PATH with the correct path on your␣
→˓computer
make

# Edit your ~/.bashrc to include R to your PATH
$ echo "export PATH=/YOUR_PATH/R/bin/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the␣
→˓correct path on your computer
$ source ~/.bashrc
$ R --help # test if R is executable

When R_LIB is set to your $PATH, R scripts know the location of the libraries and are able to install additional R
packages to the selected directory.

16 Chapter 6. Contents

https://gitlab.com/ezlab/busco/
http://www.microbesonline.org/fasttree/
https://cran.r-project.org/


PanTools, Release 3.4.0

$ echo "R_LIBS=/YOUR_PATH/R/R_LIBS/" >> ~/.bashrc
$ echo "export R_LIBS" >> ~/.bashrc
$ echo $R_LIBS # validate if the path to the R libraries can be found

Install MAFFT

MAFFT is required for all the alignment functionalities, such as the alignment of homology groups and inferring the
core SNP phylogeny. The full manual is available at https://mafft.cbrc.jp/alignment/software/.

$ git clone https://github.com/GSLBiotech/mafft.git
$ cd mafft/core

# Edit the first line of Makefile to change the desired install location, from 'PREFIX = /
→˓usr/local' to 'PREFIX = /YOUR_DESIRED_PATH/mafft/'
# Make sure the 'ENABLE_MULTITHREAD = -Denablemultithread' line is uncommented, to enable␣
→˓multithreading

# Edit your ~/.bashrc to include MAFFT to your $PATH
$ echo "export PATH=/YOUR_PATH/mafft/bin/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with␣
→˓the correct path on your computer
$ source ~/.bashrc
$ mafft --help # test if MAFFT is executable

Install IQ-tree

Using IQ-tree we infer phylogenetic trees by maximum likelihood. Information about the tool can found on their
webpage https://github.com/ebi-pf-team/interproscan/wiki/HowToDownload

wget https://github.com/Cibiv/IQ-TREE/releases/download/v1.6.12/iqtree-1.6.12-Linux.tar.
→˓gz
tar -xvf iqtree-1.6.12-Linux

# Edit your ~/.bashrc to include IQ-tree to your $PATH
$ echo "export PATH=/YOUR_PATH/iqtree-1.6.12-Linux/bin/:\$PATH" >> ~/.bashrc #replace␣
→˓YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ iqtree -h # test if IQ-tree is executable

6.1. Installing and configuring the required software 17

https://mafft.cbrc.jp/alignment/software/
https://github.com/ebi-pf-team/interproscan/wiki/HowToDownload


PanTools, Release 3.4.0

Install fastANI or MASH

To be able to construct a Neighbor-Joining phylogeny using ANI-scores, either fastANI or MASH is required. The
manual for fastANI is available at https://github.com/ParBLiSS/FastANI/. The manual for MASH can be found at
https://mash.readthedocs.io/en/latest/.

$ wget https://github.com/marbl/Mash/releases/download/v2.2/mash-Linux64-v2.2.tar
$ tar -xvf mash-Linux64-v2.2.tar
$ mv mash-Linux64-v2.2/mash .

$ wget https://github.com/ParBLiSS/FastANI/releases/download/v1.32/fastANI-Linux64-v1.32.
→˓zip #
$ unzip fastANI-Linux64-v1.32.zip

# Edit your ~/.bashrc to include MASH and FastANI to your $PATH
$ echo "export PATH=/YOUR_PATH/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct␣
→˓path on your computer
$ source ~/.bashrc
$ mash -h # test if MASH is executable
$ fastANI -h # test if FastANI is executable

Install BLAST

BLAST is only required by one function, where the sequences are blasted against a database to obtain their COG cate-
gory. Information about BLAST can be found at https://www.ncbi.nlm.nih.gov/books/NBK279690/?report=classic.

$ wget https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ncbi-blast-2.10.1+-
→˓x64-linux.tar.gz
$ tar -xvf ncbi-blast-2.10.1+-x64-linux.tar.gz

# Edit your ~/.bashrc to include BLAST to your $PATH
$ echo "export PATH=/YOUR_PATH/ncbi-blast-2.10.1+/bin/:\$PATH" >> ~/.bashrc #replace␣
→˓YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ blastp -help # test if BLAST is executable

Install InterProScan

Not required by any function, but the .GFF3 output of InterProScan can be read to include functional annotations to
the database. The installation itself can be quite tricky as it uses many different third-party binaries and each having
their own dependencies. Please check https://github.com/ebi-pf-team/interproscan/wiki/HowToDownload and take a
look at the install requirements as well. Installation of the Panther models is not required.

18 Chapter 6. Contents

https://github.com/ParBLiSS/FastANI/
https://mash.readthedocs.io/en/latest/
https://www.ncbi.nlm.nih.gov/books/NBK279690/?report=classic
https://github.com/ebi-pf-team/interproscan/wiki/HowToDownload


PanTools, Release 3.4.0

Phobius via InterProScan

Phobius predictions can be performed during the InterProScan analysis but it is not part of the standard set of pre-
dictions. To allow these predictions, https://phobius.sbc.su.se/, place the entire directory in the InterProScan/bin/ di-
rectory and edit the interproscan.properties configuration file. More information about including Phobius into the
InterProScan analysis is found at https://interproscan-docs.readthedocs.io/en/latest/ActivatingLicensedAnalyses.html.

Install eggNOGmapper

Not required by any function, but the .annotations output of eggNOG-mapper can be read to include functional anno-
tations to the database. Information about this tool can be found on http://eggnog-mapper.embl.de/

git clone https://github.com/eggnogdb/eggnog-mapper.git

6.1.4 Installing pre-commit hooks

First install the pre-commit Python package by following the installation instructions.

Then, inside the root directory of the repository, run:

pre-commit install

This step you will need to run only once after cloning the repository. The hooks will be installed in your local reposi-
tory’s configuration under .git/hooks/pre-commit.

After installation of the hooks they will be triggered at each commit if any Java files have changed. Should any of the
pre-commit hooks fail, git will not allow you to create the commit. The output of the pre-commit hooks should tell you
what failed, allowing you to fix any problems and to re-add the affected files for another commit attempt.

Pre-commit hooks can be run manually as well with:

pre-commit run

6.2 Construct pangenome

6.2.1 Build pangenome

Build a pangenome out of a set of genomes.

6.2. Construct pangenome 19

https://phobius.sbc.su.se/
https://interproscan-docs.readthedocs.io/en/latest/ActivatingLicensedAnalyses.html
http://eggnog-mapper.embl.de/
https://pre-commit.com/
https://pre-commit.com/#install


PanTools, Release 3.4.0

Required software

KMC 2.3 or 3.0

Required arguments

--database-path/-dp Path to the pangenome database.
--genomes-file/-gf A text file containing paths to FASTA files of genomes to be added to the pangenome; each on
a separate line.

Optional arguments

--kmer-size/-ks Size of k-mers, allowed to be 6 <= K_SIZE <= 255. By not giving this argument, the most optimal
k-mer size is calculated automatically.

Example input file

/always/genome1.fasta
/use_the/genome2.fasta
/full_path/genome3.fasta

Example command

$ pantools build_pangenome -dp tomato_DB -gf tomato_3.txt

Relevant literature

• PanTools: representation, storage and exploration of pan-genomic data

6.2.2 Add annotations

Construct or expand the annotation layer of an existing pangenome. The layer consists of genomic features like genes,
mRNAs, proteins, tRNAs etc. PanTools is only able to read General Feature Format (GFF) files.

Multiple annotations can be assigned to a single genome; however, only one annotation a time can be included in an
analysis. The most recently included annotation of a genome is included as default, unless a different annotation is
specified via --annotations-file, see the explanation below

20 Chapter 6. Contents

http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=kmc&subpage=about
https://academic.oup.com/bioinformatics/article/32/17/i487/2450785


PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the pangenome database.
--annotations-file/-af A text file with on each line a genome number and the full path to the corresponding
annotation file, separated by a space.

Optional arguments

--connect-annotations/-ca Connect the annotated genomic features to nucleotide nodes in the DBG.

Example command

$ pantools add_annotations -dp tomato_DB -af annotations.txt

Output

The annotated features are incorporated in the graph. Output files are written to the database directory.

• annotation_overview.txt, a summary of the GFF files incorporated in the pangenome

• annotation.log, a list of misannotated feature identifiers.

Example input file

Each line of the file starts with the genome number followed by the full path to the annotation file. The genome numbers
match the line number of the file that you used to construct the pangenome.

1 /always/genome1.gff
2 /use_the/genome2.gff
3 /full_path/genome3.gff

GFF3 file format
The GFF format consists of one line per feature, each containing 9 columns of data, plus optional track definition
lines, that must be tab separated. Please use the proper hierarchy for the feature: gene -> mRNA -> CDS. Where gene
is the parent of mRNA and mRNA is the parent of the CDS feature. When a gene consists of multiple CDS features but
is missing mRNA, only the last CDS feature is annotated in the pangenome. The following example from
Saccharomyces cerevisiae YJM320 (GCA_000975885) displays a correctly formatted gene entry:

CP004621.1 Genbank gene 44836 45753 . - . ID=gene99;
→˓Name=RPL23A;end_range=45753,.;gbkey=Gene;gene=RPL23A;gene_biotype=protein_coding;locus_
→˓tag=H754_YJM320B00023;partial=true;start_range=.,44836
CP004621.1 Genbank mRNA 44836 45753 . - . ID=rna99;
→˓Parent=gene99;gbkey=mRNA;gene=RPL23A;product=Rpl23ap
CP004621.1 Genbank exon 45712 45753 . - . ID=id112;
→˓Parent=rna99;gbkey=mRNA;gene=RPL23A;product=Rpl23ap
CP004621.1 Genbank exon 44836 45207 . - . ID=id113;
→˓Parent=rna99;gbkey=mRNA;gene=RPL23A;product=Rpl23ap

(continues on next page)

6.2. Construct pangenome 21



PanTools, Release 3.4.0

(continued from previous page)

CP004621.1 Genbank CDS 45712 45753 . - 0 ID=cds92;
→˓Parent=rna99;Dbxref=SGD:S000000183,NCBI_GP:AJQ01854.1;Name=AJQ01854.1;Note=corresponds␣
→˓to s288c YBL087C;gbkey=CDS;gene=RPL23A;product=Rpl23ap;protein_id=AJQ01854.1
CP004621.1 Genbank CDS 44836 45207 . - 0 ID=cds92;
→˓Parent=rna99;Dbxref=SGD:S000000183,NCBI_GP:AJQ01854.1;Name=AJQ01854.1;Note=corresponds␣
→˓to s288c YBL087C;gbkey=CDS;gene=RPL23A;product=Rpl23ap;protein_id=AJQ01854.1

Select specific annotations for analysis

Only one annotation per genome is considered by any PanTools functionality. When multiple annotations are included,
the last added annotation of a genome is automatically selected unless an --annotations-file is included specifying
which annotations to use. This annotation file contains only annotation identifiers, each on a separate line. The most
recent annotation is used for genomes where no annotation number is specified in the file. Below is an example where
the third annotation of genome 1 is selected and the second annotation of genome 2 and 3.

1_3
2_2
3_2

6.2.3 Grouping proteins

Group

Generate homology groups based on similarity of protein sequences. The resulting homology groups connect similar
sequences in the pangenome database. Homology groups contain not only orthologous pairs, but also pairs of homologs
duplicated after the speciation of the two species, so-called in-paralogs. The sizes of the groups are controlled by the
--relaxation parameter that can be set very strict or more lenient, depending on the evolutionary distance of the
genomes. When you are unsure which relaxation setting is most suitable for your dataset, running the optimal_grouping
functionality is recommended.

Be aware that not every sequence within a homology group has to be similar to the other sequences. For example, two
non-similar protein sequences each have a high-similarity hit with the same protein sequence but align to a different
region, one at the start and one near the end of the sequence.

When you want to run group another time but with different parameters, the currently active grouping must first either
be moved or removed. This can be achieved with the move- or remove_homology_groups functions.

Method
Here, we explain a simplified version of the original algorithm, please take a look at our publication for an extensive
explanation. First, potential similar sequences are identified by counting shared k-mer (protein) sequences. Similarity
between the selected protein sequences is calculated through (local) Smith-Waterman alignments. When the
(normalized) similarity score of two sequences is above a given threshold (controlled by --relaxation), the
proteins are connected with each other in the similarity graph. Every similarity component is then passed to the MCL
(Markov clustering) algorithm to be possibly broken into several homology groups.

22 Chapter 6. Contents



PanTools, Release 3.4.0

Required software

MCL

Required arguments

--database-path/-dp Path to the pangenome database.

Optional arguments

--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.
--threads/-tn The number of parallel working threads. Default and minimum required threads is 3.
--longest-transcript Only cluster the longest protein-coding transcript of genes.
--annotations-file/-af A text file with the identifiers of annotations to be included, each on a separate line. The
most recent annotation is selected for genomes without an identifier.

Optional arguments that influence the clustering sensitivity

--relaxation/-rn The relaxation in homology calls. Should be in range [1-8], from strict to relaxed (default 1).
IMPORTANT! This argument automatically sets the four remaining arguments, stated here below.
--intersection-rate/-ir The fraction of k-mers that needs to be shared by two intersecting proteins. Should be
in range [0.001, 0.1] (default = 0.08).
--similarity-threshold/-st The minimum normalized similarity score of two proteins. Should be in range
[1-99] (default = 95).
--mcl-inflation/-mi The MCL inflation. Should be in range [1-19] (default = 10.8).
--contrast/-cn The contrast factor. Should be in range [0-10] (default = 8).

Example commands

$ pantools group -dp tomato_DB
$ pantools group -dp tomato_DB -tn 12 -rn 4

Output

• pantools_homology_groups.txt, overview of the created homology groups. Each line represents one homology
group, starting with the homology group (database) identifier followed by a colon (:) and mRNA identifiers (from
GFF) that are separated by a space. To ensure all identifiers are unique in this file, the mRNA ids are extended
by a hash symbol (#) and a genome number. The following line is example output of an homology group with
two genes from genome 1 and 146:

14001754: DLACAPHP_00001_mRNA#1 OPJEMMMF_03822_mRNA#146

6.2. Construct pangenome 23

https://micans.org/mcl/


PanTools, Release 3.4.0

Relevant literature

• Efficient inference of homologs in large eukaryotic pan-proteomes

6.2.4 Optimal grouping

Finding the most suitable settings for group can be difficult and is always dependent on evolutionary distance of the
genomes in the pangenome. This functionality runs group on all eight --relaxation settings, from strictest (d1) to
the most relaxed (d8). To find the optimal setting, complete and non-duplicated BUSCO genes that are present in all
genomes are used to validate each setting.

Method
A perfect clustering of the sequences would place each BUSCO in a separate homology group with one representative
protein per genome. When BUSCO is run against the pangenome, the proteins corresponding to the BUSCO HMMs
have been identified. For each BUSCO, the representative proteins are checked whether these are clustered into a
single or multiple groups. These groups are searched to identify sequences other than the current BUSCO. The
highest number of correctly clustered BUSCOs present in one group are true positives (tp). Any other gene clustered
inside this group is considered a false positive (fp) The remaining BUSCO genes outside this best group are counted
as false negative (fn). The summation of tps fps and fns are defined as TP, FP and FN, respectively. From these
scores recall, precision and F-score measures are calculated as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2
𝑅𝑒𝑐𝑎𝑙𝑙 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

Choosing the optimal setting
Choosing the correct setting is usually a trade-off between TPs and FNs. The most strict grouping results in a
significantly higher number of clusters as the more relaxed settings. With stringent settings, related proteins could get
separated; however, a high number of false positives is (usually) prevented (FN > FP). When you would go for a more
loose setting, the related proteins are likely to part of the same group, but other sequences could be included as well
(FN < FP).

No grouping is active after running this function. Use the generated output files to identify a suitable grouping. Acti-
vate this grouping using change_grouping. An overview of the available groupings and used settings is stored in the
‘pangenome’ node (inside the database), or can be created by running grouping_overview.

24 Chapter 6. Contents

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2362-4


PanTools, Release 3.4.0

Fig. 6.1: Proteins of three distinct homology groups are represented as triangles, circles and squares. Green shapes
are true positives (tp) which have been assigned to the true group; red shapes are false positives (fp) for the group they
have been incorrectly assigned to, and false negatives (fn) for their true group

Required software

MCL

Required arguments

--database-path/-dp Path to the pangenome database.
--input-file/-if The output directory created by the busco_protein function. This directory is found inside the
pangenome database, in the busco directory.

Optional arguments

--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.
--threads/tn Number of threads. The default and minimum required threads is 3.
--value Only consider a selection of relaxation settings (1-8 allowed).
--fast Assume the optimal grouping is found when the F1-score drops compared to the previous clustering round.
--longest-transcript Only cluster protein sequences of the largest transcript per gene.
--annotations-file/-af A text file with the identifiers of annotations to be included, each on a separate line. The
most recent annotation is selected for genomes without an identifier.

6.2. Construct pangenome 25

https://micans.org/mcl/


PanTools, Release 3.4.0

Example commands

$ pantools optimal_grouping -dp bacteria_DB -if bacteria_DB/busco/bacteria_odb9
$ pantools optimal_grouping -dp bacteria_DB -if bacteria_DB/busco/bacteria_odb9 -tn 12 --
→˓fast
$ pantools optimal_grouping -dp bacteria_DB -if bacteria_DB/busco/bacteria_odb9 -tn 12 --
→˓fast --longest-transcript
$ pantools optimal_grouping -dp bacteria_DB -if bacteria_DB/busco/bacteria_odb9 -tn 12 --
→˓value 1,2,3,4

$ Rscript optimal_grouping.R

Output

After each clustering round, homology groups are incorporated in the graph. A text file with homology group and
gene identifiers is stored in the group directory in the pangenome database. This file is named after the used sequence
similarity threshold (25-95). Each line represents one homology group, starting with the homology group (database)
identifier followed by a colon (:) and mRNA identifiers (from GFF) that are separated by a space. The mRNA identifiers
are extended by a hash (#) and their genome number. The following line is example output of an homology group with
two genes from genome 1 and 146:

14001754: DLACAPHP_00001_mRNA#1 OPJEMMMF_03822_mRNA#146

Output files are written to optimal_grouping directory inside the database.

• grouping_overview.csv, a summary of the benchmark statistics. Use this file to find the most suitable grouping
for your pangenome.

• optimal_grouping.R, Rscript to plot FN and FP values per grouping.

• counts_per_busco.info, a log file of the scoring. Shows in which homology groups the BUSCO genes were
placed for the different groupings.

6.2.5 Change grouping

Only a single homology grouping can be active in the pangenome. Use this function to change the active grouping
version. Information of the available groupings and used settings is stored in the ‘pangenome’ node (inside the database)
and can be created by running grouping_overview.

Required arguments

--database-path/-dp Path to the pangenome database.
--version The version of homology grouping to become active.

26 Chapter 6. Contents



PanTools, Release 3.4.0

Fig. 6.2: :italic:`Example output of **optimal_grouping.R**. The number of FN and FP for all eight relaxation
settings.`

Example command

$ pantools change_grouping -dp tomato_DB --version 5

6.2.6 Build panproteome

Build a panproteome out of a set of proteins. By only including protein sequences, the usable functionalities are limited
to a protein-based analysis, please see differences pangenome and panproteome. No additional proteins can be added
to the panproteome, it needs to be rebuilt completely.

6.2. Construct pangenome 27



PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the pangenome database.
--proteomes-file/-pf A text file containing paths to FASTA files of proteins to be added to the panproteome;
each on a separate line.

Example input file

/always/proteins1.fasta
/use_the/proteins2.fasta
/full_path/proteins3.faa

Example command

$ pantools build_panproteome -dp proteome_DB -pf proteins.txt

28 Chapter 6. Contents



PanTools, Release 3.4.0

6.2.7 Add genomes

Include additional genomes to an already available pangenome.

Required software

KMC 2.3 or 3.0

Required arguments

--database-path/-dp Path to the pangenome database.
--genomes-file/-gf A text file containing paths to FASTA files of genomes to be added to the pangenome; each on
a separate line.

Example input file

/use_the/genome4.fasta
/full_path/genome5.fasta

Example command

$ pantools add_genomes -dp pangenome_DB -gf extra_genomes.txt

6.2.8 Add phenotypes

Including phenotype data to the pangenome which allows the identification of phenotype specific genes, SNPs, func-
tions, etc.. Altering the data is done by rerunning the command with an updated CSV file.

Data types
Each phenotype node contains a genome number and can hold the following data types: String, Integer, Float or
Boolean.

• Values recognized as round number are converted to an Integer and to a Double when having one or multiple
decimals.

• Boolean types are identified by checking if the value matches ‘true’ or ‘false’, ignoring capitalization of letters.

• String values remain completely unaltered except for spaces and quotes characters. Spaces are changed into an
underscore (’_’) character and quotes are completely removed.

Bin numerical values
When using numerical values, two genomes are only considered to share a phenotype if the value is identical.
PanTools creates an alternative version for these phenotypes by binning the values. Taking ‘Pathogenicity’ from the
example below we see the integers between 3 and 15. Using these two extreme values three bins are created for a new
phenotype ‘Pathogenicity_binned’: 3-6.33, 6.34-11.66 and 11.67-15. The number of bins is controlled through
--value. For skewed data, consider making the bins manually and include this as string phenotype.

6.2. Construct pangenome 29

http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=kmc&subpage=about


PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the pangenome database.
--phenotype/-ph A CSV file containing the phenotype information.

Optional argument

--append Do not remove existing phenotype nodes but only add new properties to it. If a property already exists,
values from the new file will overwrite the old.
--value Number of bins used to group numerical values of a phenotype.

Example input file

The input file needs to be in .CSV format, a plain text file where each value is separated by a comma. The first row
should start with ‘Genome,’ followed by the phenotype names and/or identifiers. The first column must start with
genome numbers corresponding to the one in your pangenome. Phenotypes and metadata must be placed on the same
line as their genome number. A field can remain empty when the phenotype for a genome is missing or unknown. Here
below is an example of five genomes contains six phenotypes:

Genome,Gram,Region,Pathogenicity,Boolean,float,species
1,+,NL,3,True,0.1,Species
2,+,BE,,False,0.1,Species3
3,+,LUX,7,true,0.1,Species3
4,+,NL,9,false,0.1,Species3
5,+,BE,15,TRUE,0.1,Species1

Example command

$ pantools add_phenotype -dp tomato_DB --phenotype pheno.csv
$ pantools add_phenotype -dp tomato_DB -ph pheno.csv --append

Output

Phenotype information is stored in ‘phenotype’ nodes in the graph. An output file is written to the database directory.

• phenotype_overview.txt, a summary of the available phenotypes in the pangenome

6.2.9 BUSCO

BUSCO attempts to provide a quantitative assessment of the completeness in terms of expected gene content of a
genome assembly. Proteins are placed into categories of Complete and single-copy (S), Complete and duplicated (D),
fragmented (F), or missing (M). This function is able to run BUSCO v3, v4 or v5 against protein sequences of the
pangenome.

The number of reported duplicated genes in eukaryotes is often to high as different protein isoforms are counted multiple
times. To adjust the imprecise duplication score, include the --longest-transcripts argument to the command.

You don’t have a benchmark set?

30 Chapter 6. Contents



PanTools, Release 3.4.0

• When using BUSCO v3, go to https://busco.ezlab.org, download a odb9 set, and untar it with tar -xvzf.
Include the entire directory in the command using the --input-file argument.

• For BUSCO v4 and v5, you only have to provide the odb10 database name with the --input-file argument, the
database is downloaded automatically. To get a full list of the available datasets, run busco --list-datasets.

Required software

BUSCO must be set to your $PATH. For v3, test if the which run_BUSCO.py command displays the full path so it
can accessed anywhere. For v4 and v5, test if busco is executable.

Required arguments

--database-path/-dp Path to the pangenome database.
--input-file/-if A BUSCO benchmark dataset.

Optional arguments

--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.
--name A string with questionable BUSCOs. Completeness (%) is recalculated by excluding these genes.
--version The BUSCO version. Select either ‘busco3’, ‘busco4’ or ‘busco5’ (default).
--longest-transcript Only search against the longest protein-coding transcript of genes.
--annotations-file/-af A text file with the identifiers of annotations to be included, each on a separate line. The
most recent annotation is selected for genomes without an identifier.

Example commands

$ pantools busco_protein -dp bacteria_DB -if bacteria_odb10
$ pantools busco_protein -dp bacteria_DB -if busco_sets/bacteria_odb9/ --version busco3
$ pantools busco_protein -dp bacteria_DB -if busco_sets/bacteria_odb9/ --version busco3 -
→˓-name POG093P01OY,POG093P0009,POG093P022K,POG093P027M,POG093P00Z2,POG093P013J
$ pantools busco_protein -dp bacteria_DB -if bacteria_odb10 --version busco4 --longest-
→˓transcript

Output

The BUSCO scores are stored inside BUSCO nodes of the pangenome graph. Output files are written to the busco
directory inside the database.

• busco_scores.txt, overview of the BUSCO scores per genome. Average and median statistics are calculated per
category.

• busco_overview.csv, a table which combines the completeness scores per genome together with the duplicated,
fragmented and missing BUSCO genes.

• hmm_overview.txt, a list of BUSCO genes showing the assigned categories per genome.

6.2. Construct pangenome 31

https://busco.ezlab.org


PanTools, Release 3.4.0

6.2.10 Add functional annotations

PanTools is able to incorporate functional annotations into the pangenome by reading output from various functional
annotation tools.

Add functions

This function can integrate different functional annotations from a variety of annotation files. Currently available
functional annotations: Gene Ontology, Pfam, InterPro, TIGRFAM, Phobius, SignalP and COG. The first time
this function is executed, the Pfam, TIRGRAM, GO, and InterPro databases are integrated into the pangenome. Pho-
bius, SignalP and COG annotations do not have separate nodes and are directly annotated on ‘mRNA’ nodes in the
pangenome.

Gene names (or identifiers) from the input file are used to identify gene nodes in the pangenome. Only genes with an
exactly matching name/identifier can be connected to functional annotation nodes! Use the same FASTA and GFF3
files that were used to construct the pangenome database.

Functional databases

Database versions in v3.4.0 repository

Version Download date (dd-mm-yyyy)

Gene ontology 2021-12-15 20-12-2021
Pfam 35.0 20-12-2021
TIGRFAM 15.0 01-10-2020
InterPro 87+ Not included in repository

We regularly check and update the four functional database. To update the functional database manually, download the
following files and replace the old ones in the /pantools/addons/ directory. The TIGRFAM.info files are bundled in
the TIGRFAMs_15.0_INFO.tar.gz file; download the file to addons/tigrfam and uncompress the tarball first. The first
time running this function .INFO files are combined into a new file COMBINATION_INFO_FILES and removed
afterwards.

File Database
type

Required
directory

Download link

go.basic.obo GO addons http://purl.obolibrary.org/obo/go/go-basic.obo
gene_ontology.txt Pfam addons ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases//Pfam35.

0/database_files/gene_ontology.txt.gz
Pfam-A.clans.tsv Pfam addons ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases//Pfam35.

0/Pfam-A.clans.tsv.gz
interpro.xml InterPro addons https://ftp.ebi.ac.uk/pub/databases/interpro/current_

release/interpro.xml.gz
TIGRFAMS_GO_LINK TIGR-

FAM
ad-
dons/tigrfam

https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_
15.0/TIGRFAMS_GO_LINK

TIGR-
FAMS_ROLE_LINK

TIGR-
FAM

ad-
dons/tigrfam

https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_
15.0/TIGRFAMS_ROLE_LINK

TIGR_ROLE_NAMES TIGR-
FAM

ad-
dons/tigrfam

https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_
15.0/TIGR_ROLE_NAMES

TIGR00001.INFO to
TIGR04571.INFO

TIGR-
FAM

ad-
dons/tigrfam

https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_
15.0/TIGRFAMs_15.0_INFO.tar.gz

32 Chapter 6. Contents

http://purl.obolibrary.org/obo/go/go-basic.obo
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases//Pfam35.0/database_files/gene_ontology.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases//Pfam35.0/database_files/gene_ontology.txt.gz
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases//Pfam35.0/Pfam-A.clans.tsv.gz
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases//Pfam35.0/Pfam-A.clans.tsv.gz
https://ftp.ebi.ac.uk/pub/databases/interpro/current_release/interpro.xml.gz
https://ftp.ebi.ac.uk/pub/databases/interpro/current_release/interpro.xml.gz
https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGRFAMS_GO_LINK
https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGRFAMS_GO_LINK
https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGRFAMS_ROLE_LINK
https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGRFAMS_ROLE_LINK
https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGR_ROLE_NAMES
https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGR_ROLE_NAMES
https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGRFAMs_15.0_INFO.tar.gz
https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGRFAMs_15.0_INFO.tar.gz


PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the pangenome database.
--input-file/-if A text file with on each line a genome number and the full path to the corresponding annotation
file, separated by a space.

Optional arguments

--annotations-file/-af A text file with the identifiers of annotations to be included, each on a separate line. The
most recent annotation is selected for genomes without an identifier.

Example command

$ pantools add_functions -dp tomato_DB -if f_annotations.txt
$ pantools add_functions -dp tomato_DB -if f_annotations.txt -af annotations.txt

Output

Functional annotations are incorporated in the graph. A log file is written to the log directory.

• add_functional_annotations.log, a log file with the the number of added functions per type and the identifiers
of functions that could not be included.

Example input files

The --input-file requires to be formatted like an annotation input file. Each line of the file starts with the genome
number followed by the full path to an annotation file.

File type Recognized by pattern in file name
InterProScan interpro & .gff
eggNOG-mapper eggnog
Phobius phobius
SignalP signalp
Custom file custom

1 /mnt/scratch/interpro_results_genome_1.gff
1 /mnt/scratch/custom_annotation_1.txt
1 /mnt/scratch/phobius_1.txt
2 /mnt/scratch/signalp.txt
2 /mnt/scratch/eggnog_genome_2.annotations
2 /mnt/scratch/transmembrane_annotations.txt phobius
3 /mnt/scratch/ipro_results_genome_3.annot custom

Annotation file types
PanTools can recognize functional annotations in different output formats.

6.2. Construct pangenome 33



PanTools, Release 3.4.0

Phobius and SignalP are not standard analyses of the InterProScan pipeline and require some additional steps during
the InterProScan installation. Please take a look at our InterProScan install instruction to verify if the tools are part of
the prediction pipeline. Phobius 1.01

Function type Allowed annotation file
GO InterProscan .gff & custom annotation file
Pfam InterProscan .gff & custom annotation file
InterPro InterProscan .gff & custom annotation file
TIGRFAM InterProscan .gff & custom annotation file
Phobius InterProscan .gff & Phobius 1.01 output
SignalP InterProscan .gff, signalP 4.1 output, signalP 5.0 output
COG eggNOG-mapper

InterProScan gff file:

##gff-version 3
##interproscan-version 5.52-86.0
AT4G21230.1 ProSiteProfiles protein_match 333 620 39.000664 + . date=06-10-2021;
→˓Target=mRNA.AT4G21230.1 333 620;Ontology_term="GO:0004672","GO:0005524","GO:0006468";
→˓ID=match$42_333_620;signature_desc=Protein kinase domain profile.;Name=PS50011;
→˓status=T;Dbxref="InterPro:IPR000719"
AT3G08980.5 TIGRFAM protein_match 25 101 3.7E-14 + . date=06-10-2021;
→˓Target=mRNA.AT3G08980.5 25 101;Ontology_term="GO:0006508","GO:0008236","GO:0016020";
→˓ID=match$66_25_101;signature_desc=sigpep_I_bact: signal peptidase I;Name=TIGR02227;
→˓status=T;Dbxref="InterPro:IPR000223"
AT2G17780.2 Phobius protein_match 338 354 . + . date=06-10-2021;
→˓Target=AT2G17780.2 338 354;ID=match$141_338_354;signature_desc=Region of a membrane-
→˓bound protein predicted to be embedded in the membrane.;Name=TRANSMEMBRANE;status=T
AT2G17780.2 Phobius protein_match 1 337 . + . date=06-10-2021;
→˓Target=AT2G17780.2 1 337;ID=match$142_1_337;signature_desc=Region of a membrane-bound␣
→˓protein predicted to be outside the membrane, in the extracellular region.;Name=NON_
→˓CYTOPLASMIC_DOMAIN;status=T
AT3G11780.2 SignalP_EUK protein_match 1 24 . + . date=06-10-2021;
→˓Target=mRNA.AT3G11780.2 1 24;ID=match$230_1_24;Name=SignalP-noTM;status=T
AT1G04300.2 CDD protein_match 40 114 1.54717E-13 + . date=06-10-2021;
→˓Target=mRNA.AT1G04300.2 40 114;Ontology_term="GO:0005515";ID=match$212_40_114;
→˓signature_desc=MATH;Name=cd00121;status=T;Dbxref="InterPro:IPR002083"

eggNOG-mapper (tab separated) file:

#query_name seed_eggNOG_ortholog seed_ortholog_evalue seed_ortholog_score best_tax_
→˓level Preferred_name GOs EC KEGG_ko KEGG_Pathway KEGG_Module KEGG_Reaction KEGG_rclass␣
→˓BRITE KEGG_TC CAZy BiGG_Reaction taxonomic scope eggNOG OGs best eggNOG OG COG␣
→˓Functional cat. eggNOG free text desc.
ATKYO-2G54530.1 3702.AT2G35130.2 1.9e-179 636.0 ␣
→˓Brassicales GO:0003674,GO:0003676,GO:0003723,GO:0003824,GO:0004518,GO:0004519,
→˓GO:0005488,GO:0005575,GO:0005622,GO:0005623,GO:0006139,GO:0006725,GO:0006807,
→˓GO:0008150,GO:0008152,GO:0009451,GO:0009987,GO:0016070,GO:0016787,GO:0016788,
→˓GO:0034641,GO:0043170,GO:0043226,GO:0043227,GO:0043229,GO:0043231,GO:0043412,
→˓GO:0044237,GO:0044238,GO:0044424,GO:0044464,GO:0046483,GO:0071704,GO:0090304,
→˓GO:0090305,GO:0097159,GO:1901360,GO:1901363 ␣
→˓Viridiplantae 37R67@33090,3GAUT@35493,3HNDD@3699,KOG4197@1,KOG4197@2759 NA|NA|NA ␣
→˓ E Pentacotripeptide-repeat region of PRORP

(continues on next page)

34 Chapter 6. Contents



PanTools, Release 3.4.0

(continued from previous page)

ATKYO-UG22500.1 3712.Bo02269s010.1 7.5e-35 153.7 ␣
→˓Brassicales Viridiplantae 29I9W@1,
→˓2RRH4@2759,383W6@33090,3GWQZ@35493,3I1A9@3699 NA|NA|NA
ATKYO-1G60060.1 3702.AT1G48090.1 0.0 6241.0 ␣
→˓Brassicales ko:K19525 ko00000 Viridiplantae ␣
→˓ 37IJB@33090,3GAN0@35493,3HQ90@3699,COG5043@1,KOG1809@2759 NA|NA|NA U Vacuolar␣
→˓protein sorting-associated protein
ATKYO-3G74720.1 3702.AT3G52120.1 7.2e-245 852.8 ␣
→˓Brassicales ko:K13096 ko00000,ko03041 ␣
→˓Viridiplantae 37QYY@33090,3G9VU@35493,3HRDK@3699,KOG0965@1,KOG0965@2759 NA|NA|NA ␣
→˓ L SWAP (Suppressor-of-White-APricot) surp domain-containing protein D111 G-patch␣
→˓domain-containing protein
ATKYO-4G41660.1 3702.AT4G16340.1 0.0 3392.1 ␣
→˓Brassicales GO:0003674,GO:0005085,GO:0005088,GO:0005089,GO:0005488,GO:0005515,
→˓GO:0005575,GO:0005622,GO:0005623,GO:0005634,GO:0005737,GO:0005783,GO:0005829,
→˓GO:0005886,GO:0006810,GO:0008064,GO:0008150,GO:0008360,GO:0009605,GO:0009606,
→˓GO:0009628,GO:0009629,GO:0009630,GO:0009958,GO:0009966,GO:0009987,GO:0010646,
→˓GO:0010928,GO:0012505,GO:0016020,GO:0016043,GO:0016192,GO:0017016,GO:0017048,
→˓GO:0019898,GO:0019899,GO:0022603,GO:0022604,GO:0023051,GO:0030832,GO:0031267,
→˓GO:0032535,GO:0032956,GO:0032970,GO:0033043,GO:0043226,GO:0043227,GO:0043229,
→˓GO:0043231,GO:0044422,GO:0044424,GO:0044425,GO:0044432,GO:0044444,GO:0044446,
→˓GO:0044464,GO:0048583,GO:0050789,GO:0050793,GO:0050794,GO:0050896,GO:0051020,
→˓GO:0051128,GO:0051179,GO:0051234,GO:0051493,GO:0065007,GO:0065008,GO:0065009,
→˓GO:0070971,GO:0071840,GO:0071944,GO:0090066,GO:0098772,GO:0110053,GO:1902903 ␣
→˓ko:K21852 ko00000,ko04131 Viridiplantae 37QIM@33090,
→˓3G8RK@35493,3HSFN@3699,KOG1997@1,KOG1997@2759 NA|NA|NA T Belongs to the DOCK␣
→˓family

A custom input file must consist of two tab or comma separated columns. The first column should contain a gene/mRNA
id, the second an identifier from one of four functional annotation databases: GO, Pfam, InterPro or TIGRFAM.

AT5G23090.4,GO:0046982
AT5G23090.4,IPR009072
AT1G27540.2,PF03478
AT2G18450.1,TIGR01816

Phobius 1.01 ‘short’ (tab separated) input file:

SEQENCE ID TM SP PREDICTION
mRNA-YPR204W 0 0 o
mRNA-ndhB-2_1 6 Y n5-16c21/22o37-57i64-83o89-113i134-156o168-189i223-
→˓246o

Phobius 1.01 ‘long’ (tab separated) input file:

ID mRNA-YPR204W
FT DOMAIN 1 1032 NON CYTOPLASMIC.
//
ID mRNA-ndhB-2_1
FT SIGNAL 1 21
FT DOMAIN 1 4 N-REGION.
FT DOMAIN 5 16 H-REGION.
FT DOMAIN 17 21 C-REGION.

(continues on next page)

6.2. Construct pangenome 35



PanTools, Release 3.4.0

(continued from previous page)

FT DOMAIN 22 36 NON CYTOPLASMIC.
FT TRANSMEM 37 57
FT DOMAIN 58 63 CYTOPLASMIC.
FT TRANSMEM 64 83
FT DOMAIN 84 88 NON CYTOPLASMIC.
FT TRANSMEM 89 113
FT DOMAIN 114 133 CYTOPLASMIC.
FT TRANSMEM 134 156
FT DOMAIN 157 167 NON CYTOPLASMIC.
FT TRANSMEM 168 189
FT DOMAIN 190 222 CYTOPLASMIC.
FT TRANSMEM 223 246
FT DOMAIN 247 253 NON CYTOPLASMIC.
//

SignalP 4.1 ‘short’ (tab separated) input file:

# name Cmax pos Ymax pos Smax pos Smean D ? Dmaxcut ␣
→˓Networks-used
mRNA-rpl2-3 0.148 20 0.136 20 0.146 3 0.126 0.131 N 0.450 ␣
→˓SignalP-noTM
mRNA-cox2 0.107 25 0.132 12 0.270 4 0.162 0.148 N 0.450 ␣
→˓SignalP-noTM
mRNA-cox2_1 0.850 17 0.776 17 0.785 2 0.717 0.753 Y 0.500 ␣
→˓SignalP-TM

SignalP 5.0 ‘short’ (tab separated) input file:

# SignalP-5.0 Organism: Eukarya Timestamp: 20211122233246
# ID Prediction SP(Sec/SPI) OTHER CS Position
AT3G26880.1 SP(Sec/SPI) 0.998803 0.001197 CS pos: 21-22. VYG-KK. Pr: 0.9807
mRNA-rpl2-3 OTHER 0.001227 0.998773

Relevant literature

• Expansion of the Gene Ontology knowledgebase and resources

• InterPro in 2019: improving coverage, classification and access to protein sequence annotations

• TIGRFAMs and Genome Properties in 2013

• A Combined Transmembrane Topology and Signal Peptide Prediction Method

• Expanded microbial genome coverage and improved protein family annotation in the COG database

36 Chapter 6. Contents

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210579/
https://academic.oup.com/nar/article/47/D1/D351/5162469
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531188/
https://www.sciencedirect.com/science/article/abs/pii/S0022283604002943?via%3Dihub
https://academic.oup.com/nar/article/43/D1/D261/2439462


PanTools, Release 3.4.0

Add antiSMASH gene clusters

Read antiSMASH output and incorporate Biosynthetic Gene Clusters (BGC) nodes into the pangenome database. A
‘bgc’ node holds the gene cluster product, the cluster address and has a relationship to all gene nodes of the cluster.
For this function to work, antiSMASH should be performed with the same FASTA and GFF3 files used for building
the pangenome. antiSMASH output will not match the identifiers of the pangenome when no GFF file was included.

As of PanTools v3.3.4 the required antiSMASH version is 6.0.0. Gene cluster information is parsed from the .JSON
file that is generated in each run. We try to keep the parser updated with newer versions but please contact us when this
is no longer the case.

Version Version date

antiSMASH 6.0.0 21-02-2021

Required arguments

--database-path/-dp Path to the pangenome database.
--input-file/-if A text file with on each line a genome number and the full path to the corresponding
antiSMASH output file, separated by a space.

Optional arguments

--annotations-file/-af A text file with the identifiers of annotations to be included, each on a separate line. The
most recent annotation is selected for genomes without an identifier.

Example input file

The --input-file requires to be formatted like a regular annotation input file. Each line of the file starts with the
genome number followed by the full path to the JSON file.

1 /mnt/scratch/IPO3844/antismash/IPO3844.json
4 /home/user/IPO3845/antismash/IPO3845.json

Example command

$ pantools add_antismash -dp tomato_DB -if clusters.txt

6.2. Construct pangenome 37



PanTools, Release 3.4.0

6.2.11 Removing data

The following functionalities allow the removal of large sets of nodes and relationships from the pangenome. These
functions will first ask for a confirmation before the nodes are actually removed. Be careful, the data is not backed up
and removing nodes or properties means it is permanently gone.

Remove nodes

Remove a selection of nodes and their relationships from the pangenome. For a pangenome database the following
nodes cannot be removed: nucleotide, pangenome, genome, sequence. When using a panproteome, mRNA nodes
cannot be removed.

Required argument

--database-path/-dp Path to the pangenome database.

Requires either one of the following arguments

--node one or multiple node identifiers, separated by a comma.
--label a node label, all nodes matching the label are removed.

Optional arguments

Both optional arguments can only be used in combination with --label.

--skip/-sk Do not remove nodes of the selected genomes.
--reference/-ref Only remove nodes of the selected genomes.

Example commands

$ pantools remove_nodes -dp tomato_DB --node 10348734,10348735,10348736
$ pantools remove_nodes -dp tomato_DB --label pfam
$ pantools remove_nodes -dp tomato_DB --label interpro --reference 2-6

Remove phenotypes

Delete phenotype nodes or remove specific phenotype information from the nodes. The specific phenotype property
needs to be specified with --phenotype. When this argument is not included, phenotype nodes are removed.

38 Chapter 6. Contents



PanTools, Release 3.4.0

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--phenotype/-ph name of the phenotype. All information of the given phenotype is removed from ‘phenotype’
nodes.
--skip/-sk Do not remove nodes of the selected genomes.
--reference/-ref Only remove nodes of the selected genomes.

Example commands

$ pantools remove_phenotype -dp tomato_DB
$ pantools remove_phenotype -dp tomato_DB --phenotype color
$ pantools remove_phenotype -dp tomato_DB --phenotype color --skip 11,12

Remove annotations

Remove all the genomic features that belong to annotations, such as gene, mRNA, exon, tRNA, and feature nodes.
Functional annotation nodes are not removed with this function but can be removed with remove_nodes. Removing
annotations can be done in two ways:

1. Selecting genomes with --reference or --skip, for which all annotation features will be removed.

2. Remove specific annotations by providing a text file with identifiers via the --annotations-file argument.

Required argument

--database-path/-dp Path to the pangenome database.

Requires either one of the following arguments

--skip/-sk a selection of genomes excluded from the removal of annotations.
--reference/-ref a selection of genomes for which all annotations will be removed.
--annotations-file/-af A text file with the identifiers of annotations to be removed, each on a separate line.

6.2. Construct pangenome 39



PanTools, Release 3.4.0

Example input file

The input file should be a single line with annotation identifiers separated by a comma. The following example will
remove the first annotations of genome 1, 2 and 3 and the second annotation of genome 1.

1_1
1_2
2_1
3_1

Example command

$ pantools remove_annotations --skip 3,4,5
$ pantools remove_annotations -af annotations.txt

Move or remove grouping

As only one grouping can be active at the time, the currently active grouping needs to be removed or inactivated before
group can be run again.

• remove_grouping deletes all ‘homology_group’ nodes and ‘is_similar’ relations between ‘mRNA’ nodes from
the database.

• move_grouping relabels ‘homology_group’ nodes to ‘inactive_homology_group’. The moved grouping can be
activated again with change_grouping.

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments for remove_grouping

--version Select a specific grouping version to be removed. Two additional options: ‘all’ to remove all groupings
and ‘all_inactive’ to remove all inactive groupings.
--fast Do not remove the ‘is_similar’ relationships between mRNA nodes. This does not influence the next
grouping.

Example command

$ pantools move_grouping -dp tomato_DB

$ pantools remove_grouping -dp tomato_DB
$ pantools remove_grouping -dp tomato_DB --version 1
$ pantools remove_grouping -dp tomato_DB --version all --fast
$ pantools remove_grouping -dp tomato_DB --version all_inactive

40 Chapter 6. Contents



PanTools, Release 3.4.0

6.3 Pangenome characterization

Functionalities for characterization a pangenome based on genes, k-mer sequences and functions. In this manual we
use several pangenome related terms with the following definitions:

• Core, an element is present in all genomes

• Unique, an element is present in a single genome

• Accessory, an element is present in some but not all genomes

When phenotype information is used in the analysis, three additional categories can be assigned:

• Shared, an element present in all genomes of a phenotype

• Exclusive, an element is only present in a certain phenotype

• Specific, an element present in all genomes of a phenotype and is also exclusive

Fig. 6.3: The possible classification categories for genes, k mers and functions. Additional copies of an element are
assigned to the same category.

6.3.1 Pangenome metrics

Generates relevant metrics of the pangenome and the individual genomes and sequences.

• On the pangenome level: the number of genomes, sequences, annotations, genes, proteins, homology groups,
k-mers, and database nodes and edges.

• On the genome and sequence level: assembly statistics and metrics about functional elements. The assembly
statistics consists of genome size, N25-N95, L25-L95, BUSCO scores and GC content. An overview of the
functional elements is created by summarizing the functional annotations per genome (and sequence) and re-
porting the shortest, longest, average length and density per MB for genome features such as genes, exons and
CDS.

6.3. Pangenome characterization 41



PanTools, Release 3.4.0

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--skip/-sk Exclude a selection of genomes
--reference/-ref Only include a selection of genomes.
--annotations-file/-af A text file with the identifiers of annotations that should be used. The most recent
annotation is selected for genomes without an identifier.

Example commands

$ pantools metrics -dp tomato_DB
$ pantools metrics -dp tomato_DB --skip 1,2,5

Output

Output files are written to the metrics directory in the database. Note: the percentage a genome or sequence is covered
by a genes, repeats etc., (currently) does not consider overlap between features!

• metrics.txt, overview of the metrics calculated on the pangenome and genome level.

• metrics_per_genome.csv, summary of the metrics that are calculated on a genome level. The output is formatted
as table.

• metrics_per_sequence.csv, summary of metrics that are calculated on a sequence (contig/scaffold) level. The
output is formatted as table. This file is not created when using a panproteome.

6.3.2 Homology groups

The following functions require the protein sequences to be clustered by group.

Gene classification

Classification of the pangenome’s gene repertoire. Homology groups are utilized to identify shared genes between
genomes. The default criteria for defining the category of a gene is shown in Fig. 6.3.

To identify soft core and cloud genes, the core and unique thresholds (%) can be relaxed by --core-threshold and
--unique-threshold, respectively. The --phenotype-threshold argument can be used to lower the threshold for
phenotype specific and shared homology groups.

42 Chapter 6. Contents



PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the pangenome database.

Optional arguments

--phenotype/-ph A phenotype name, used to find genes specific to the phenotype.
--skip/-sk Exclude a selection of genomes. This automatically lowers the threshold for core genes.
--reference/-ref Only include a selection of genomes. This automatically lowers the threshold for core genes.
--core-threshold/-ct Threshold (%) for (soft) core genes. Default is 100% of genomes.
--unique-threshold/-ut Threshold (%) for unique/cloud genes. Default is a single genome, not a percentage.
--phenotype-threshold/-pt Threshold (%) for phenotype specific/shared genes. Default is 100% of genomes
with phenotype.
--mode MLSA Finds suitable single-copy groups for a MLSA.

Example command

$ pantools gene_classification -dp tomato_DB
$ pantools gene_classification -dp tomato_DB --unique-threshold 5 --core-threshold 95
$ pantools gene_classification -dp tomato_DB --phenotype resistance --skip 2,3 --
→˓phenotype-threshold 95

Output

Output files are written to the gene_classification directory in the database.

1. gene_classification_overview.txt, statistics of the core, accessory, unique groups of the pangenome and individ-
ual genomes.

2. classified_groups.csv, the classified homology groups formatted as the table in the example table above.

3. cnv_core_accessory.txt, core and accessory groups with genomes that have additional copies compared to the
lowest number (at least 1) in the group.

4. group_size_occurrence.txt, number of times a group of a certain size occurs in the pangenome. The homology
group sizes can be based on the number of proteins or the number of genomes.

5. gene_distance_tree.R, an R script to cluster genomes based on gene distance (absence/presence). For more
information, see the Gene distance tree manual.

6. shared_unshared_gene_count.csv, six tables with the number of shared and unshared genes between genomes:
all genes, distinct genes and informative distinct genes. To get the number of distinct genes, additional copies
of a gene within a homology group are ignored. Genes are considered informative when shared by at least two
genomes.

Additional files are generated when the --phenotype argument is included.

1. gene_classification_phenotype_overview.txt, the number of identified phenotype shared and specific groups.

2. phenotype_disrupted.txt, this file shows which proteins prevented phenotype shared groups to be specific.

3. phenotype_cnv, homology groups where all members of a phenotype have at least one additional copy of a gene
compared to one of the other phenotypes.

6.3. Pangenome characterization 43



PanTools, Release 3.4.0

4. phenotype_association.csv, results of performed Fisher exact tests on homology groups with an unequal pro-
portion of phenotype members.

The following files contain homology group node identifiers.

1. all_homology_groups.csv, the node identifiers of all homology groups.

2. core_groups.csv, the node identifiers of the core homology groups.

3. single_copy_orthologs.csv, the node identifiers of single-copy ortholog groups. This is a subset of the core set
where each genome is only allowed to have a one copy of a gene.

4. accessory_groups.csv, the node identifiers of accessory homology groups. The groups are ordered (in descend-
ing order) by the group size based on the total number of genomes present.

5. accessory_combinations.csv, the node identifiers of accessory homology groups, ordered by the combination
of genomes by which they are shared.

6. unique_groups.csv, the node identifiers of unique homology groups ordered by genome.

7. phenotype_specific_groups.csv, the node identifiers of phenotype specific homology groups.

8. phenotype_shared_groups.csv, the node identifiers of phenotype shared homology groups.

9. phenotype_exclusive_groups.csv, the node identifiers of phenotype exclusive homology groups.

When --mode MLSA is included

1. mlsa_suggestions.txt, a list of single copy ortholog genes all having the same gene name. This file cannot be
created when using a panproteome.

Core unique thresholds

Runs a simplified version of the gene_classification function to test the effect of different --core-threshold and
--unique-threshold cut-offs between 1 and 100%.

Required arguments

--database-path/-dp Path to the pangenome database.

Optional arguments

--skip/-sk Exclude a selection of genomes. This automatically lowers the threshold for core genes.
--reference/-ref Only include a selection of genomes. This automatically lowers the threshold for core genes.

44 Chapter 6. Contents



PanTools, Release 3.4.0

Example command

$ pantools core_unique_thresholds -dp tomato_DB
$ pantools core_unique_thresholds -dp tomato_DB --skip 1,2,5-10
$ R script tomato_DB/R_scripts/core_unique_thresholds/core_unique_thresholds.R

Output

Output files are written to core_unique_thresholds directory in the database.

• core_unique_thresholds.csv, the number of (soft) core unique/cloud homology groups for all tested thresholds.

• core_unique_thresholds.R, the R script plots the number of (soft) core unique/cloud homology groups for all
tested thresholds.

Fig. 6.4: Example output of core_unique_thresholds.R on a pangenome of 197 Pectobacterium genomes demonstrates
the effect of loosening the thresholds. The number of (soft) core (orange) homology groups slightly increases when the
cut-off for this category is lowered from 100% (200 genomes) to 1% (2) in steps of 1%. Unique/cloud (blue) start at
0.00 which represents a single genome. Using a 0.01 cut-off, groups are unique/cloud having 2 genomes or less. The
threshold is further increased to 100% (200) in steps of 1%.

Grouping overview

Reports the content of all (active & inactive) homology groups for the different groupings in the pangenome. Include
--mode fast into the command to get a quick overview of the available groupings and the settings that were used.

6.3. Pangenome characterization 45



PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the pangenome database.

Optional arguments

--mode fast Only show which grouping is active and which groupings can be activated.

Example commands

$ pantools grouping_overview -dp tomato_DB
$ pantools grouping_overview -dp tomato_DB --mode fast

Output

Output files are written to /database_directory/group/

• grouping_overview.txt, all homology groups in the pangenome. For each homology group, the total number of
members and the number of members per per genome is reported.

• current_pantools_homology_groups.txt, overview of the active homology groups. Each line represents one
homology group. The line starts with the homology group (database) identifier followed by a colon and the rest
are mRNA IDs (from gff/genbank) seperated by a space.

6.3.3 Pangenome structure

Iterations of random genome combinations according to the models proposed by Tettelin et al.* in 2005 are used
to determine the contribution of new accessions with respect to the increase in core, accessory, and unique. Each
iteration starts with three random genomes from which core, accessory and unique homology groups are identified.
Subsequently, random genomes are added and group reclassified until the maximum number of genomes is reached.
To simulate the overall pangenome-size increase and core-genome decrease, we suggest to use at least 10,000 iterations.
Additional copies of a gene are ignored in the simulation.

Heaps’ law (a power law) can be fitted to the number of new genes observed when increasing the pangenome by one
random genome. The formula for the power law model is 𝑛 = 𝑘 *𝑁−𝑎, where n is the newly discovered genes, N is
the total number of genomes, and k and a are the fitting parameters. A pangenome can be considered open when a < 1
and closed if a > 1.

Pangenome size genes

Pangenome size estimation based on homology groups. This function requires the sequences to be already clustered
by group.

46 Chapter 6. Contents



PanTools, Release 3.4.0

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--threads/-tn (default value: 1) : The number of parallel working threads.
--skip/-sk Exclude a selection of genomes
--reference/-ref Only include a selection of genomes.
--value Number of loops (default is 10.000).

Example commands

$ pantools pangenome_structure_genes -dp tomato_DB
$ pantools pangenome_structure_genes -dp tomato_DB --value 1000 --skip 1-3,5

$ R script pangenome_growth.R
$ R script gains_losses_median_or_average.R
$ R script gains_losses_median_and_average.R
$ R script heaps_law.R

Output

Output files are written to /database_directory/pangenome_size/gene/

• pangenome_size.txt, various statistics on the number core, accessory, and unique homology groups for the
different pangenome sizes.

• gains_losses.txt, the average group gain and loss between different pangenome sizes. First the average number
(core, accessory, and unique) groups for each pangenome size is calculated. The average gain and loss of groups
is then found by subtracting the averages of a certain size to the averages of one genome larger (e.g. pangenome
size of 5 is compared to 6).

• gains_losses_last_genome.txt, the number of (core, accessory, and unique) groups that are gained or lost when
including one of the genomes to a pangenome of the remaining genomes.

• pangenome_growth.R, an R script to plot the number of core, accessory and unique groups for the different
genome combinations. Second option is to only plot a core and accessory curve by including unique groups to
the accessory.

• gains_losses_median_and/or_average.R, R scripts to plot the average and median group gain and loss between
pangenome sizes.

• heaps_law.R, an R script to perform Heaps’ law.

6.3. Pangenome characterization 47



PanTools, Release 3.4.0

Fig. 6.5: Example output of pangenome_growth.R (left) and gains_losses_median_and_average.R (right) on a
pangenome of 204 bacteria.

Relevant literature

• Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial
“pan-genome”

• Comparative genomics: the bacterial pan-genome

Pangenome size k-mers

The same simulation as pangenome_size_genes, but performed on k-mer sequences instead of homology groups. As
the number of k-mers is significantly higher than the number of homology groups, the runtime is much longer and the
(default) number of loops is set to only 100.

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--threads/-tn (default value: 1) : The number of parallel working threads.
--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.
--value Number of loops (default is 100).

48 Chapter 6. Contents

https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1073/pnas.0506758102
https://doi.org/10.1016/j.mib.2008.09.006


PanTools, Release 3.4.0

Example command

$ pantools pangenome_size_kmer -dp tomato_db
$ pantools pangenome_size_kmer -dp tomato_db --skip 4,5-9 --value 500
$ R script core_access_unique.R

Output

Output files are written to /database_directory/pangenome_size/kmer/

• pangenome_size_kmer.txt, statistics of the number of k-mers with different pangenome sizes.

• core_access_unique.R, an R script to plot the number core, accessory, unique k-mers for the different genome
combinations.

• core_access.R, an R script to plot the number of core and accessory (including unique) k-mers for the different
genome combinations.

6.3.4 K-mer classification

Calculate the number of core, accessory, unique, (and phenotype specific) k-mer sequences. Because k-mer sequences
of non-branching paths of the DBG graph are collapsed into a single node, k-mers are first uncompressed before they
are counted. When --mode compressed is included, sequences are not uncompressed and considered as a single
k-mer. Nucleotide nodes with a ‘degenerate’ label contain letters other than the four non-ambiguous ones (A, T, C, G).
and are ignored by this function.

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--phenotype/-ph A phenotype name, used to identify phenotype specific k-mers.
--skip/-sk Exclude a selection of genomes. This automatically lowers the threshold for core k-mers.
--reference/-ref Only include a selection of genomes. This automatically lowers the threshold for core k-mers.
--core-threshold/-ct Threshold (%) for (soft) core k-mers. Default is 100% of the genomes.
--unique-threshold/-ut Threshold (%) for unique/cloud k-mers. Default is a single genome, not a percentage.
--phenotype-threshold/-pt Threshold (%) for phenotype specific/shared k-mers. Default is 100% of genomes
with phenotype. --mode compressed Do not uncompress collapsed non-branching k-mers for k-mer counting.

6.3. Pangenome characterization 49



PanTools, Release 3.4.0

Example commands

$ pantools kmer_classification -dp tomato_DB
$ pantools kmer_classification -dp tomato_DB --phenotype resistant --skip 2,3,4
$ pantools kmer_classification -dp tomato_DB --mode compressed --core-threshold 95 --
→˓unique-threshold 5

Output

Output files are written to /database_directory/kmer_classification/

• kmer_classification_overview.txt, some general statistics and percentages about the core, accessory unique k-
mers per genome.

• kmer_occurrence.txt, the occurrence of k-mers per genome and total occurrence in the pangenome.

• kmer_distance_tree.R, an R script to cluster genomes with four different k-mer distances to choose from. For
more information, see The k-mers are ordered from high to low by the total number of genomes the k-mer is
found.

• unique_kmers.csv, the node identifiers of unique k-mers ordered by genome.

• phenotype_specific_kmers.csv, the node identifiers of phenotype specific k-mers.

• phenotype_shared_kmers.csv, the node identifiers of phenotype shared k-mers.

6.3.5 Functional annotations

The following functions can only be used when any type of functional annotation is added to the database.

Functional classification

Similar to gene and k-mer classification, this function identifies core, accessory, unique functional annotations in the
pangenome. Only the following functions are considered for this analysis: biosynthetic gene clusters from antiSMASH,
GO, PFAM, InterPro, TIGRFAM.

Required arguments

--database-path/-dp Path to the pangenome database.

Optional commands

--phenotype/-ph A phenotype name, used to find functions specific to a phenotype.
--skip/-sk Exclude a selection of genomes. This automatically lowers the threshold for core genes.
--reference/-ref Only include a selection of genomes. This automatically lowers the threshold for core genes.
--core-threshold/-ct Threshold (%) For (soft) core functions (default is 100%).
--unique-threshold/-ut Threshold (%) For unique/cloud functions (default is a single genome, not a percentage).
--annotations-file/-af A text file with the identifiers of annotations that should be used. The most recent
annotation is selected for genomes without an identifier.

50 Chapter 6. Contents



PanTools, Release 3.4.0

Example command

$ pantools functional_classification -dp tomato_DB
$ pantools functional_classification -dp tomato_DB -ph flowering_time

Output

Output files are written to /database_directory/function/functional_classification/

• functional_annotation_overview, number of core, accessory, and unique functions. Holds the number of phe-
notype shared and specific functions when a phenotype is included.

• core_functions.txt, functional annotations found in every genome of the pangenome.

• accessory_functions.txt, functional annotations labeled as accessory.

• unique_functions.txt, functional annotations unique to a single genome.

When a --phenotype is included

• phenotype_shared_functions.txt, functional annotations shared by all phenotype members.

• phenotype_specific_functions.txt, functional annotations specific to certain phenotypes.

Functional annotation overview

Creates several summary files for each type of functional annotation present in the database: GO, PFAM, InterPro,
TIGRFAM, COG, Phobius, and biosynthetic gene clusters from antiSMASH. In addition to the functions that must be
added via add_functional_annotations, this function also requires proteins to be clustered by group.

Required argument

--database-path/-dp Path to the pangenome database.

Optional commands

--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.
--annotations-file/-af A text file with the identifiers of annotations that should be used. The most recent
annotation is selected for genomes without an identifier.

6.3. Pangenome characterization 51



PanTools, Release 3.4.0

Example command

$ pantools function_overview -dp tomato_DB
$ pantools function_overview -dp tomato_DB --reference 2-4

Output

Output files are written to function directory in the database. The overview CSV files are tables with on each row a
function identifier with the frequency of per genome and.

• functions_per_group_and_mrna.csv, overview of all homology groups and the associated functions.

• function_counts_per_group.csv,

• go_overview.csv, overview of the GO terms in the pangenome.

• pfam_overview.csv, overview of the PFAM domains in the pangenome.

• tigrfam_overview.csv, overview of the TIGRFAMs in the pangenome.

• interpro_overview.csv, overview of the InterPro domains in the pangenome.

• bgc_overview.csv, overview of the added biosynthetic gene clusters from antiSMASH in the pangenome.

• phobius_signalp_overview.csv, overview of the included Phobius transmembrane topology and signal peptide
predictions in the pangenome.

• cog_overview.csv, overview of the functional COG categories in the pangenome.

• cog_per_class.R, an R script to plot the distribution of COG categories over the core, accessory, unique homol-
ogy groups.

Fig. 6.6: Example output of cog_per_class.R. The proportion of COGs functional categories assigned to homology
groups.

52 Chapter 6. Contents



PanTools, Release 3.4.0

GO enrichment

For a given set of mRNA’s or homology groups, this function identifies over or underrepresented GO terms by using a
hypergeometric distribution.

The p-value is calculated from the hypergeometric distribution

𝑃 (𝑋 = 𝑘) =

(︀
𝐾
𝑘

)︀(︀
𝑁−𝐾
𝑛−𝑘

)︀(︀
𝑁
𝑛

)︀
• Parameter N = size of the population (Universe of genes).

• Parameter n = size of the sample (signature gene set)

• Parameter K = successes in population (enrichment gene set)

• Parameter k = successes in sample (intersection of both gene sets)

• Return the p-value of the Hypergeometric Distribution for P(X=k)

Prepare input for hypergeometric tests
The size and number of successes of the sample (n, k) and background (N, K) is prepared for each genome individually.
Per genome, loops over every mRNA and checks for connected GO nodes. Each GO node connected to the mRNA is
used to move up in the GO hierarchy via ‘is_a’ relations until the molecular_function, biological_process or cellu-
lar_component node is reached. Each GO term is counted only once per mRNA and a mRNA needs at least one GO
term to be included in the sample and background sets. mRNA nodes which are part of the input homology groups are
included into the sample set.

Multiple testing correction
Critical p-value using Bonferroni
For a GO germ to be significant, the p-value should be below 0.05 divided by number of tests per genome. For example,
when 100 tests were performed, each p-value must be below 0.05/100 = 0.0005 to be considered significant.

Critical p-value using Benjamini-Hochberg procedure
1. Individual p-values are put in ascending order.

2. Ranks are assigned to the p-values. The lowest value has a rank of 1, the second lowest gets rank 2, etc..

3. The individual p-values Benjamini-Hochberg critical value is calculated using the formula (𝑖/𝑚)𝑄, where i is
the individual p-values rank, m = total number of tests and Q is the false discovery rate.

4. Compare your original p-values to the critical B-H from Step 3; find the largest p value that is smaller than the
critical value.

The critical p-value for the first rank for a total of 100 GO terms (tests) with a 5% false discovery rate is (1/100)*0.05 =
0.0005. For the second and third rank this will be 0.0010 and 0.0015, respectively.

Required software

• dot. Although this function still works when dot is not (properly) installed, no visualizations of the GO hierarchy
can be created.

6.3. Pangenome characterization 53



PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the database.

Requires either one of the following arguments

--homology-groups/-hm A text file with homology group node identifiers, seperated by a comma --node mRNA
node identifiers, seperated by a comma on the command line

Optional arguments

--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.
--value The false discovery rate (percentage), default is 5%.

Example command

$ pantools go_enrichment -dp tomato_DB -hm unique_groups.txt
$ pantools go_enrichment -dp tomato_DB -hm pheno_specific.txt --value 1 -ref 1-3,5

Output

Output files are stored in /database_directory/function/go_enrichment/.

• go_enrichment.csv, overview of all GO terms, p-values and the significance of enrichment. The output is for-
matted as a table.

• go_enrichment_overview_per_go.txt, results of the analysis are ordered by GO term.

• function_overview_per_mrna.txt, all functional annotations connected to the input sequences, ordered per
mRNA.

• function_overview_per_genome.txt, all functional annotations connected to the input sequences, ordered per
genome.

Additional files are generated per individual genome and placed in /results_per_genome/.

• go_enrichment.txt, list of GO terms, p-values and the critical p-values of Benjamin-Hochberg and Bonferroni.

• revigo.txt, a list of GO terms and p-values that can be visualized on http://revigo.irb.hr

• bio_process.pdf, dot visualisation of the Biological Process GO hierarchy.

• cell_comp.pdf, dot visualisation of the Cellular Component GO hierarchy.

• mol_function.pdf, dot visualisation of the Molecular Function GO hierarchy.

54 Chapter 6. Contents

http://revigo.irb.hr


PanTools, Release 3.4.0

Fig. 6.7: Visualization of GO hierarchy by dot

6.4 Phylogeny

There are six different methods implemented which can create phylogenetic trees. The consensus tree method creates
a Maximum per-Locus Quartet-score Species Tree (MLQST) from a set of gene trees. The other five methods use a
Neighbour-joining (NJ) or Maximum Likelihood (ML) algorithm to infer the phylogeny.

• Core phylogeny (ML)
• K-mer distance tree (NJ)
• Consensus tree

• Gene distance tree (NJ)
• ANI tree (NJ)
• MLSA (ML)

All functions produce tree files in Newick format that can be visualized with iTOL or any other phylogenetic tree
visualization software.

• Rename phylogeny

• Reroot phylogeny

• Create tree template

6.4. Phylogeny 55



PanTools, Release 3.4.0

6.4.1 Core phylogeny

Infer a Maximum likelihood (ML) or Neighbour-Joining (NJ) phylogeny from SNPs identified from single copy
orthologous genes. This function requires single-copy homology groups which are automatically detected if
gene_classification was run before. The homology groups are aligned in two consecutive rounds with msa.

When using --clustering-method ML, parsimony informative positions are extracted from the trimmed alignments
and concatenated into single continuous sequence per genome. IQ-tree infers the ML tree with minimum of 1000
bootstrap iterations.

The --clustering-method NJ method counts the total and shared number of variable sites between two genomes
in the alignment and calculates a Jaccard distance (0-1):

𝐷𝐽(𝐴,𝐵) = 1− 𝐽(𝐴,𝐵) =
|𝐴 ∪𝐵| − |𝐴 ∩𝐵|

|𝐴 ∪𝐵|

Required software

Please cite the appropriate tool(s) when using the core phylogeny in your research.

• MAFFT

• IQ-tree (Only required for ML)

Required arguments

--database-path/-dp Path to the database.

Optional arguments

--homology-groups/-hm A file with homology group node identifiers of single copy groups. Default is
single_copy_orthologs.csv, generated in the previous gene_classification run.
--clustering-method ML/--clustering-method NJ Maximum likelihood (default) or Neighbour joining.
--mode protein Use proteins instead of nucleotide sequences.
--threads/-tn Number of threads (default is 1).
--phenotype/-ph Include phenotype information in the resulting phylogeny.
--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.

Example commands

$ pantools core_phylogeny -dp tomato_DB -tn 24
$ pantools core_phylogeny -dp tomato_DB -tn 24 --clustering-method NJ --mode protein
$ pantools core_phylogeny -dp tomato_DB -tn 24 --clustering-method ML --phenotype␣
→˓resistance

56 Chapter 6. Contents

https://mafft.cbrc.jp/alignment/software/
http://www.iqtree.org


PanTools, Release 3.4.0

Output

Output files are written to the core_snp_tree directory in the database.

• sites_per_group.csv, number of parsimony informative and variable sites per homology group.

When --clustering-method NJ is included

• core_snp_NJ_tree.R, Rscript to create NJ tree from distances based on shared sites. Two distances can be
selected, based on variable sites and parsimony informative sites.

• shared_informative_positions.csv, table with total number of shared parsimony informative sites between
genomes.

• shared_variable_positions.csv, table with total number of shared variable sites between genomes.

When --clustering-method ML is included

• informative.fasta, nucleotides from parsimony informative sites of the alignments, concatenated into a single
sequences per genomes.

• variable.fasta, nucleotides from variable sites of the alignment, concatenated into a single sequences per
genomes.

A command is generated which can be used to execute IQ-tree and infer the phylogeny on informative.fasta.

• informative.fasta.iqtree, IQ-tree log file.

• informative.fasta.treefile, the ML phylogeny.

• informative.fasta.splits.nex, the splits graph. With ideal data, this file is a tree, whereas data with conflicting
phylogenetic signals will result in a tree-like network. This type of tree/network can be visualized with a tool
like SplitsTree

6.4.2 K-mer distance tree

A NJ phylogeny of k-mer distances can be created by executing the Rscript generated by k-mer_classification.

Three types of distances can be selected to infer the phylogeny. The first two distances are Jaccard distances (0-1): one
considering only distinct k-mers and the other using all k-mers. The distance from distinct k-mers ignores additional
copies of a k-mer.

𝐷𝐽(𝐴,𝐵) = 1− 𝐽(𝐴,𝐵) =
|𝐴 ∪𝐵| − |𝐴 ∩𝐵|

|𝐴 ∪𝐵|

𝐷𝐽(𝐴,𝐵) = 1− 𝐽(𝐴,𝐵) =
|𝐴 ⊎𝐵| − |𝐴 ∩𝐵|

|𝐴 ⊎𝐵|

We observed an exponential increase in the k-mer distance as the evolutionary distance between two genomes increases.
So in the case of more distant genomes, the depicted clades are still correct but the extreme long branch lengths make
the tree hard to decipher. To normalize the numbers, we implemented the MASH distance. Distance = 1/ * ln(J), where
k is the k-mer length; J is the jaccard index (of distinct k-mers).

$ Rscript genome_kmer_distance_tree.R

6.4. Phylogeny 57

https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/splitstree/
https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/splitstree/


PanTools, Release 3.4.0

Output file

The phylogenetic tree genome_kmer_distance_tree.tree is written to the kmer_classification directory in the database.

6.4.3 Consensus tree

Create a consensus tree by combining gene trees from homology groups using ASTRAL-Pro. Gene trees are created
from all sequences in an homology groups, no genomes can be skipped.

Required software

Please cite MAFFT, FastTree and ASTRAL-Pro when using the consensus tree in your research.

• MAFFT

• FastTree

• ASTRAL-Pro

Required arguments

--database-path/-dp Path to the database.

Optional arguments

--threads/-tn Number of threads (default is 1).
--homology-groups/-hm A file with homology group node identifiers. Default is all_homology_groups.csv,
generated in the previous gene_classification run.

Example commands

$ pantools consensus_tree -dp apple_DB -tn 24
$ pantools consensus_tree -dp apple_DB -tn 24 -hm apple_DB/gene_classification/group_
→˓identifiers/all_homology_groups.csv
$ pantools consensus_tree -dp apple_DB -tn 24 -hm apple_DB/gene_classification/group_
→˓identifiers/core_homology_groups.csv
$ pantools consensus_tree -dp apple_DB -tn 24 -hm apple_DB/gene_classification/group_
→˓identifiers/accessory_homology_groups.csv

Output

Output files are written to the consensus_tree directory in the database.

• all_trees.hmgroups.newick, all gene trees of homology groups included in the analysis, combined into a single
file.

• consensus_tree.astral-pro.newick, the output consensus tree from ASTRAL-Pro.

58 Chapter 6. Contents

https://mafft.cbrc.jp/alignment/software/
http://microbesonline.org/fasttree/
https://github.com/chaoszhang/A-pro


PanTools, Release 3.4.0

Relevant literature

• ASTRAL-Pro: quartet-based species-tree inference despite paralogy. Molecular biology and evolution

6.4.4 Gene distance tree

A NJ phylogeny of gene distances is created by executing the Rscript generated by gene_classification.

Shared genes between genomes are identified through homology groups. Two Jaccard distance (0-1) can be used to
infer a tree: one considering only distinct genes and the other using all genes. The distance from distinct genes ignores
additional gene copies in an homology group.

𝐷𝐽(𝐴,𝐵) = 1− 𝐽(𝐴,𝐵) =
|𝐴 ∪𝐵| − |𝐴 ∩𝐵|

|𝐴 ∪𝐵|

𝐷𝐽(𝐴,𝐵) = 1− 𝐽(𝐴,𝐵) =
|𝐴 ⊎𝐵| − |𝐴 ∩𝐵|

|𝐴 ⊎𝐵|

$ Rscript gene_distance_tree.R

Output file

The phylogenetic tree gene_distance_tree.tree is written to the gene_classification directory in the database.

6.4.5 ANI tree

Average Nucleotide Identity (ANI) is a measure of nucleotide-level genomic similarity between the coding regions of
two prokaryotic genomes. Two very fast ANI estimation tools (fastANI and MASH) are implemented and are able to
perform the pairwise comparisons between genomes in the pangenome. To convert the ANI score into a distance (0-1),
the scores are transformed by 1− (𝐴𝑁𝐼/100).

Required software

The required software depends on the tool you want to use. Please cite the appropriate tool when using the ANI tree in
your research.

• fastANI

• MASH

Required argument

--database-path/-dp Path to the database.

6.4. Phylogeny 59

https://doi.org/10.1093/molbev/msaa139
https://github.com/ParBLiSS/FastANI
https://github.com/marbl/Mash


PanTools, Release 3.4.0

Optional arguments

--mode mash/--mode fastani Software to calculate ANI score (default is MASH)
--phenotype/-ph Include phenotype information in the phylogeny.
--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.
--threads/-tn Number of threads used by FastANI (default is 1). MASH is single threaded (and currently not
parallelized yet).

Example command

$ pantools ani -dp pecto_DB
$ pantools ani -dp pecto_DB --phenotype species_name --mode fastani
$ pantools ani -dp pecto_DB --skip 4,5,6 --mode mash

Output

Output files are written to the ANI directory in the database.

• ANI_scores.csv, a table with ANI scores for all genome pairs.

• ANI_distance_matrix.csv, a table with the ANI distances (1-ANI). This matrix is read by ANI_tree.R.

• ANI_tree.R, Rscript to generate NJ tree from ANI distances

Find closest typestrain

Compares bacterial strains to the typestrain when this information is available in a pangenome database.

1. Add the ‘typestrain’ phenotype to the pangenome with add_phenotypes. You only have to include typestrains
names, other genomes can be left empty as shown in the example below, five genomes with three different
typestrains.

2. Run the ANI function

3. The ‘typestrain’ phenotype is recognized, and typestrain_comparison.csv is created. This file contains the
highest score of each genome(5) against all the included typestrains and states whether the score is above 95%.

Genome,typestrain
1,Salmonella choleraesuis NCTC 5735
2,Salmonella enteritidisi NCTC 12694
3,
4,Salmonella paratyphi NCTC 5702
5,

60 Chapter 6. Contents



PanTools, Release 3.4.0

Relevant literature

• High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries

• Mash: fast genome and metagenome distance estimation using MinHash

6.4.6 MLSA

Within PanTools you can perform a Multilocus sequence analysis (MLSA) by running three consecutive functions:

1. mlsa_find_genes

2. mlsa_concatenate

3. mlsa

Step 1 Search for genes

Find your genes of interest in the pangenome and extract their nucleotide and protein sequence. A regular search
is not case sensitive but the gene names must exactly match the given input name. For example, searching a gene
with ‘sonic1’ as query will not be able find ‘sonic’, but is able to find Sonic1, SONIC1 or sOnIc1. Including the
--mode extensive argument allows a more relaxed search and using ‘sonic’ will now also find gene name variations
as ‘sonic1’, ‘sonic3’ etc.. For this function it is important that genomes are annotated by a method that follow the rules
for genetic nomenclature, so there are no differences in the naming of genes.

To gain insight in which genes are appropriate for this analysis, run gene_classification with the --mode mlsa argu-
ment. This method creates a list of genes that have same gene name, are present in all (selected) genomes and are
placed in the single-copy homology group. Using genes from this list guarantees a successful MLSA.

Possible generated warnings during gene search
When a gene is included that is not on the list of suitable genes, it is not necessarily unusable but possibly requires
manual . This function generates a log file with the issues and explains the user what to do.

• Gene is not found in every genome. Consider using --mode extensive. The gene is not suitable with the
current genome selection when this argument was already included.

• The found genes are placed in different homology groups. A directory named the gene name is created where
sequences are stored in a separate file per homology group. When one of the groups is single copy orthologous, it
is automatically selected. With multiple correct single-copy groups, the first is selected. If no single-copy groups
are found, this gene is probably not a suitable candidate based on the high divergence. If you are determined to
use the gene, align and infer a gene tree on all_sequences.fasta to identify appropriate sequences.

• At least one gene has an additional copy. The extra copies must be removed from the output file if you want
to include this gene in the analysis. Find the copies that stand out by aligning and inferring a gene tree of the
homology group.

6.4. Phylogeny 61

https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1186/s13059-016-0997-x


PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the database.
--name One or multiple gene names, seperated by a comma.

Optional arguments

--mode extensive Perform a more extensive gene search.
--skip/-sk Do not search for genes in this selection of genomes.
--reference/-ref Only search for genes in a selection of genomes.

Example command

$ pantools mlsa_find_genes -dp bacteria_DB --name dnaX,gapA,recA
$ pantools mlsa_find_genes -dp bacteria_DB --name gapA --mode extensive

Output

Output files are written to the mlsa/input/ directory in the database. For each gene name that was included, a nucleotide
and protein and FASTA file is created that holding the sequences found in all genomes.

• mlsa_find_genes.log, when one or multiple warnings are given they are placed in this log file. File is not created
when there aren’t any warnings.

Step 2 Concatenate genes

Concatenate sequences obtained by mlsa_find_genes into a single sequence per genome. The --name argument is
required, but the selection of gene names is allowed to be a sub-selection of the earlier selection.

1. Proteins are aligned with MAFFT

2. The longest gap at the start and end of each protein alignment is identified.

3. Nucleotide sequences are trimmed accordingly

4. Trimmed nucleotide sequence are concatenated into a single sequence per genome.

Required software

• MAFFT

62 Chapter 6. Contents

https://mafft.cbrc.jp/alignment/software/


PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the database.
--name One or multiple gene names, seperated by a comma.

Optional arguments

--skip/-sk Exclude a selection of genomes.
--reference/ref Only include a of genomes.
--threads/-tn Number of threads for MAFFT (default is 1).

Example command

$ pantools mlsa_concatenate -dp bacteria_DB --name dnaX,gapA
$ pantools mlsa_concatenate -dp bacteria_DB --name dnaX,gapA,recA --skip 1,2,10-25

Output

The output file is stored in /database_directory/mlsa/input/

• concatenated.fasta, file holding one concatenated sequence per genome.

Step 3 Run MLSA

Run MAFFT and IQ-tree on the concatenated nucleotide sequences from mlsa_concatenate to create an unrooted ML
tree with 1,000 bootstrappings.

Required software

Please cite the MAFFT and IQ-tree when using the MLSA in your research.

• MAFFT

• IQ-tree

Required argument

--database-path/-dp Path to the database.

6.4. Phylogeny 63

https://mafft.cbrc.jp/alignment/software/
http://www.iqtree.org"target="_blank


PanTools, Release 3.4.0

Optional arguments

--threads/-tn Select number of threads for MAFFT and IQ-tree (default is 1).
--phenotype/-ph Add phenotype information/values to the phylogeny. Allows the identification of phenotype
specific SNPs in the alignment.

Example commands

$ pantools mlsa -dp bacteria_DB
$ pantools mlsa -dp bacteria_DB -tn 24 -ph species

Output

Input and output files are written to the mlsa/output/ directory in the database.

• mlsa.afa, the alignment in CLUSTAL format.

• mlsa.fasta, the alignment in FASTA format.

• mlsa.fasta.treefile, the (ML) phylogeny created by IQ-tree in Newick format.

When a --phenotype is included

• nuc_phenotype_specific_changes.info, the positions of phenotype specific substitutions in the alignment.

The var_inf_positions directory holds files related to the counting variable positions of the alignment.

• nuc_variable_positions.csv, a table with the counts of A, T, C, G, or gap for every variable position in the
alignment

• informative_nuc_distance.csv, a table with distances calculated from parsimony informative positions in the
alignment.

• informative_nuc_site_counts.csv, a table with number of shared parsimony informative positions between
genomes.

• variable_nuc_distance.csv, a table with distances calculated from variable positions in the alignment.

• variable_nuc_site_counts.csv, a table with number of shared positions between genomes.

6.4.7 Edit Phylogeny

Rename phylogeny

Update or the terminal nodes (leaves) of a phylogenic tree. This is useful when you already constructed a tree but forgot
to include a phenotype or to update the tree with a different phenotype. When no --phenotype is included, the node
values are changed to genome numbers.

64 Chapter 6. Contents



PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the database.
--input-file/-if A phylogenetic tree in newick or nexus format. The tree must be generated by PanTools.

Optional arguments

--phenotype/-ph The phenotype used to rename the terminal nodes (leaves) of selected tree. --mode no-numbers
Exclude genome numbers from the terminal nodes (leaves).

Example command

$ pantools rename_phylogeny -dp bacteria_DB -if core_snp.tree
$ pantools rename_phylogeny -dp bacteria_DB --phenotype species -if bacteria_DB/ANI/
→˓fastANI/ani.tree

Output file

A new phylogenetic tree is written to the directory of the selected input tree:

• When the original file is called ‘old_tree.newick’, a new tree is created with filename
‘old_tree_RENAMED.newick’.

Reroot phylogeny

All phylogenetic trees that come from the PanTools functionalities are unrooted. This function is able to create a new
rooted tree simply by selecting one of the external (terminal) nodes via --value. The included number or string should
match exactly one node in the phylogeny or the program will not execute.

Required software

• ape 5

Required arguments

--input-file/-if A phylogenetic tree in newick format. The tree must be generated by PanTools.
--value The name of the terminal node that will root the tree.

6.4. Phylogeny 65

http://cran.r-project.org/package=ape


PanTools, Release 3.4.0

Example command

$ pantools reroot_phylogeny -if core_snp.tree --value 1
$ pantools reroot_phylogeny -if core_snp.tree --value 1_A.thaliana
$ pantools reroot_phylogeny -if kmer.tree --value 1_1
$ Rscript reroot.R

Output file

A new phylogenetic tree is written to the same location as the provided input file

• When the original tree is called ‘tree.newick’, the new file is named ‘tree_REROOTED.newick’.

Create tree template

Creates ‘ring’ and ‘colored range’ ITOL templates based on phenotypes for the visualization of phylogenies in iTOL.
Phenotypes must already be included in the pangenome with the add_phenotypes functionality. How to use the template
files in iTOL can be found in one of the tutorials.

If you run this function without a --phenotype argument, templates are created for trees that contain only genome
numbers as node labels. When there is a --phenotype included, templates are created where the leaves are named
according to the selected phenotype but are coloured by one of the other phenotypes in the pangenome. For example,
you originally used the ‘species name’ as a phenotype to construct the phylogeny but want them to be coloured by the
‘pathogenicity’ phenotype.

More information about ITOL templates can be found on their own webpage.

There is a maximum of 20 possible colors that are used in the following order:

Color (> 8 phenotypes) Hexadecimal color Color ( 8 phenotypes) Hexadecimal color
1 Pink #fabebe Orange #E69F00
2 Lime #bfef45 Sky blue #56B4E9
3 Cyan #42d4f4 Bluish green #009E73
4 Apricot #ffd8b1 Yellow #F0E442
5 Mint #aaffc3 Blue #0072B2
6 Beige #fffac8 Vermilion #D55E00
7 Lavender #e6beff Reddish purple #CC79A7
8 Teal #469990 Grey #999999
9 Red #e6194B
10 Orange #f58231
11 Yellow #ffe119
12 Green #3cb44b
13 Blue #4363d8
14 Purple #911eb4
15 Grey #a9a9a9
16 Maroon #800000
17 Olive #808000
18 Brown #9A6324
19 Navy #000075
20 Magenta #f032e6

66 Chapter 6. Contents

https://itol.embl.de/help.cgi


PanTools, Release 3.4.0

Figures were copied from:

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
https://sashamaps.net/docs/resources/20-colors/

Required argument

--database-path/-dp Path to the database.

Optional argument

--phenotype/-ph Use the names from this phenotype.
--value 1 Assign a color to phenotypes shared by only a single genome. If not set, default is a minimum of two
genomes.

Example command

$ pantools create_tree_template -dp bacteria_DB
$ pantools create_tree_template -dp bacteria_DB --phenotype flowering --value 1
$ pantools create_tree_template -dp bacteria_DB --phenotype root_morph --value 3

Output

Output files are written to the create_tree_template directory in the database.

• When no phenotype information is included, a directory ‘genome_numbers’ is created where the templates are
stored.

• When a --phenotype is included, a directory (named after the phenotype) is created where the templates are
stored.

The template files are named after the phenotypes, therefore the colors are based on that phenotype as well.

6.4. Phylogeny 67

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
https://sashamaps.net/docs/resources/20-colors/


PanTools, Release 3.4.0

6.5 Multiple Sequence Alignments

This page is entirely dedicated to performing Multiple Sequence Alignments (MSA) with PanTools.

6.5.1 Sequence alignments

Alignment of homology groups

Performs multiple sequence alignments with MAFFT on sets of sequences. These alignments can either be:

• per homology group

• multiple homology groups

• regions

• with all sequences containing a functional domain

The alignment consists of two rounds: After the initial alignment, protein sequences are trimmed based on the longest
start and end gap of the alignment. The number of trimmed amino acids is multiplied by three to trim the correct number
of nucleotides. If only nucleotide sequences are aligned, the nucleotide sequence alignment is used for trimming. The
trimmed sequences are aligned a second time to identify variable and parsimony informative sites. For each round, a
ML phylogeny will be created with FastTree.

Select a method
By default, this function will make a MSA per homology group. (It can still be specified with --method
per_group.) Using another option from the list above requires use of the --method argument. For aligning multiple
homology groups, please use --method multiple_groups with the homology groups specified in a csv file on a
single line (can be added with -hm /path/to/hm.csv. For aligning regions, please use --method regions with a
regions file that is added with -rf /path/to/rf.txt. For aligning sequences based on a functional domain, please
use --method functions together with a functional domain that is added with --name <domain>.

Other options
In case you are only interested in the alignment of the nucleotide or protein sequences, use --mode nucleotide or
--mode protein. When the --no-trimming argument is included, the variable and parsimony informative sites
are identified from the initial alignment and no trimming is performed (thus, only one round of aligning). The option
--fast can be used to skip running FastTree, which is used for generating a tree from the alignment.

Identify phenotype shared or specific variation
Shared SNPs or amino acid substitutions can be found among the members of a phenotype when --phenotype
<phenotype> is included. As homology groups can highly differ in size, the threshold for a phenotype shared or
specific SNP/substitution is based on the number of sequences (from a certain phenotype) of an homology group
instead of the number of genomes in the pangenome. For example, the pangenome holds 500 genomes but the
homology group consists of only 100 sequences. The threshold can be lowered by including
--phenotype-threshold <threshold>, which lowers the original threshold by multiplying it to a given
percentage.

Sequence identity and similarity
- The percentage identity of two sequences is calculated based on the number of exactly matching characters divided
by the alignment length minus the positions were both sequences have a gap.

68 Chapter 6. Contents



PanTools, Release 3.4.0

- The similarity (protein only) is calculated from the number of identical matches, increased by the number of similar
amino acids (according to the BLOSUM 62 matrix), divided by the alignment length minus the shared gap positions.
The calculated percentage of similarity is dependant on the BLOSUM matrix set by --blosum. Choose a larger
BLOSUM number BLOSUM less divergent sequences.

Required software

• MAFFT

• FastTree

Required arguments

--database-path/-dp Path to the database

Optional arguments

--method The kind of alignment to make. Can be either per_group, multiple_groups, regions or functions.
--homology-groups/-hm Text file with homology group node identifiers. Default is all groups!
--phenotype/-ph a phenotype name, used to identify phenotype specific SNPs/substitutions.
--phenotype-threshold Threshold for phenotype specific SNPs (default is 100%).
--skip and --reference/-ref Skip over a selection of genomes.
--threads-number/-tn The number of parallel working threads for MAFFT and FastTree (Highly recommended!
default is 1).
--mode nucleotide or --mode protein Choose to only align nucleotide or protein sequences (default is both).
--no-trimming Align the sequences only once.
--fast Don’t run FastTree.
--name For specifying one or multiple functional domains. (Only used when --method functions.)
--regions-file/-rf Regions file for aligning regions. (Only used when --method regions.)
--blosum a BLOSUM matrix number to control MAFFT’s sensitivity and the similarity calculation. Allowed values:
45, 62 (default), 80.

Example regions file

Each line must have a genome number, sequence number, begin and end positions that are separated by a space. Place
a minus symbol behind a region to extract the reverse complement sequence.

1 1 1 10000
195 1 477722 478426
71 10 17346 18056 -
138 47 159593 160300 -

6.5. Multiple Sequence Alignments 69

https://mafft.cbrc.jp/alignment/software/
http://microbesonline.org/fasttree/


PanTools, Release 3.4.0

Example commands

$ pantools msa -dp tomato_DB
$ pantools msa -dp tomato_DB -hm hmgroups.txt --mode protein
$ pantools msa -dp tomato_DB -hm hmgroups.txt --mode nucleotide --no-trimming
$ pantools msa -dp tomato_DB -hm hmgroups.txt --phenotype resistance --phenotype-
→˓threshold 99
$ pantools msa --method multiple_groups -dp tomato_DB
$ pantools msa --method multiple_groups -dp tomato_DB -hm hmgroups.txt --mode protein
$ pantools msa --method multiple_groups -dp tomato_DB -hm hmgroups.txt --phenotype␣
→˓resistance --phenotype-threshold 95
$ pantools msa --method regions -dp tomato_DB -rf regions.txt
$ pantools msa --method functions -dp tomato_DB --name PF10137

Output files

Output files are stored in database_directory/alignments/msa_/grouping_v?/ A separate directory is created for each
alignment which holds the input and output files.

The ‘input’ directory contains the input files for the alignments.

• nuc/prot(_trimmed).fasta, original and trimmed input sequences.

• trimmed.info, number of trimmed positions per sequence.

• sequences.info, relevant gene information of sequences in group: gene names, mRNA node id, address, strand
orientation.

The alignments and output files are written to the ‘output’ directory.

• nuc/prot(_trimmed).afa, the initial and second (trimmed) alignment in CLUSTAL format.

• nuc/prot(_trimmed).fasta, the initial and second (trimmed) alignment in FASTA format.

• nuc/prot(_trimmed).newick, FastTree ML tree inferred from the initial and second (trimmed) alignment.

• nuc/prot(_trimmed)_alignment.info, some statistics about the initial and second (trimmed) alignment: align-
ment length, number of conserved, variable and parsimony informative sites

Sequence identity and similarity output files.

• nuc/prot(_trimmed)_identity.csv, table with the sequence identity scores.

• prot(_trimmed)_similarity.csv, table with similarity of the protein sequences.

Variable and parsimony informative sites output files.

• informative_nuc/prot(_trimmed)_distance.csv, table with distances between sequences based on parsimony
informative sites in the alignment.

• variable_nuc/prot(_trimmed)_distance.csv, table with distances between sequences based on variable sites in
the alignment.

• informative_nuc/prot(_trimmed)_sites.csv, table with the number shared parsimony informative sites between
sequences.

• variable_nuc/prot(_trimmed)_sites.csv, table with the number of shared variable sites between sequences.

When a --phenotype is included.

70 Chapter 6. Contents



PanTools, Release 3.4.0

• phenotype_specific_changes_nuc/prot_groups.csv, the node identifiers of homology groups with phenotype
specific substitutions.

• phenotype_specific_changes_nuc/prot.txt, the positions of phenotype specific substitutions in the alignments.

• phenotype_disrupted_nuc/prot.txt, shows how many sequences of different phenotypes prevented a
SNP/substitution from becoming phenotype specific.

6.6 Explore the pangenome

The functionalities on this page allow to actively explore the pangenome.

• Retrieve regions from the pangenome

• Retrieve sequences and functional annotations from homology groups

• Search for genes using a gene name, functional annotation or database node identifier

• Align homology groups or genomic regions

• GO enrichment analysis

6.6.1 Gene locations

Identify and compare gene clusters of neighbouring genes based on a set of homology groups. First, identifies the
genomic position of genes in homology groups, retrieves the order of genes per genome and based on this construct
the gene clusters. If homology groups with multiple genomes were selected, the gene cluster composition is compared
between genomes. When a --phenotype is included, gene clusters can be found that only consist of groups of a certain
phenotype.

For example, 100 groups were predicted as core in a pangenome of 5 genomes. The gene clusters are first identified per
genome, after which it compares the gene order of one genome to all the other genomes. The result could be 75 groups
with genes that are not only homologous but also share their gene neighbourhood. Another example, when accessory
(present 2 in to 4 genomes) groups are given to this function in combination with a --phenotype (assigned to only
two genomes), the function can return clusters that can only be found in the phenotype members.

Required arguments

--database-path/-dp Path to the database.
--homology-groups/-hm A text file with homology group node identifiers, seperated by a comma.

Optional arguments

--phenotype/-ph A phenotype name, used to identify gene clusters shared by all phenotype members.
--value The number of allowed nucleotides between two neighbouring genes (default is 1 MB).
--gap-open/-go When constructing the clusters, allow a number of genes for each cluster that are not originally part
of the input groups (default is 0).
--core-threshold Lower the threshold (%) for a group to be considered (soft) core (default is the total number of
genomes found in the groups, not a percentage).
--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.
--mode ignore-copies Duplicated and co-localized genes no longer break up clusters.

6.6. Explore the pangenome 71



PanTools, Release 3.4.0

Example command

$ pantools locate_genes -dp tomato_DB -hm phenotype_groups.csv
$ pantools locate_genes -dp tomato_DB -hm unique_groups.csv --value 5000 -go 1
$ pantools locate_genes -dp tomato_DB -hm accessory_groups.csv --core-threshold 95 -go 1

Output files

Output files are stored in database_directory/locate_genes/

• gene_clusters_by_position.txt, the identified gene clusters ordered by their position in the genome.

• gene_clusters_by_size.txt, the identified gene clusters ordered from largest to smallest.

• compare_gene_clusters, the composition of found gene clusters is compared to the other genomes. For each
cluster, it shows which parts match other clusters and which parts do not. The file is not created when homology
groups only contain proteins of a single genome (unique).

When a --phenotype is included

• phenotype_clusters, homology group node identifiers from phenotype shared and specific clusters.

• compare_gene_clusters_PHENOTYPE.txt, the same information as compare_gene_clusters but now the
gene cluster comparison is only done between phenotype members.

6.6.2 Find genes

Find genes by name

Find your genes of interest in the pangenome by using the gene name and extract the nucleotide and protein sequence.
To be able to find a gene, every letter of the given input must match a gene name. The search is not case sensitive.
Performing a search with ‘sonic1’ as query will not be able find ‘sonic’, but is able to find Sonic1, SONIC1 or sOnIc1.
Including the --mode 1 argument allows a more relaxed search and using ‘sonic’ will now also find gene name varia-
tions as ‘sonic1’, ‘sonic3’ etc..

Be aware, for this function to work it is important that genomes are annotated by a method that follows the rules for
genetic nomenclature. Gene naming can be inconsistent when different tools are used for genome annotation, making
this functionality ineffective.

This function is the same as mlsa_find_genes but uses a different output directory. Several warnings (shown in the
other manual) can be generated during the search. These warning are less relevant for this function as the genes are not
required to be single copy-orthologous.

Required arguments

--database-path/-dp Path to the database.
--name One or multiple gene names, seperated by a comma.

72 Chapter 6. Contents



PanTools, Release 3.4.0

Optional arguments

--skip/-sk Exclude a selection of genomes.
--reference/-ref Exclude a selection of genomes.
--mode extensive Perform a more extensive gene search.

Example command

$ pantools find_genes_by_name -dp tomato_DB --name dnaX,gapA,recA
$ pantools find_genes_by_name -dp tomato_DB --name gapA --mode extensive

Output files

Output files are stored in /database_directory/find_genes/by_name/. For each gene name that was included, a nucleotide
and protein and .FASTA file is created with sequences found in all genomes.

• find_genes_by_name.log, relevant information about the extracted genes: node identifier, gene location, homol-
ogy group etc..

Find genes by annotation

Find genes of interest in the pangenome that share a functional annotation node and extract the nucleotide and protein
sequence.

Required arguments

--database-path/-dp Path to the database.

Requires either one of the following arguments

--node One or multiple identifiers of function nodes (GO, InterPro, PFAM, TIGRFAM), seperated by a comma.
--name One or multiple function identifiers (GO, InterPro, PFAM, TIGRFAM), seperated by a comma.

Optional arguments

--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.

6.6. Explore the pangenome 73



PanTools, Release 3.4.0

Example command

$ pantools find_genes_by_annotation -dp tomato_DB --node 14928,25809
$ pantools find_genes_by_annotation -dp tomato_DB --name PF00005,GO:0000160,IPR000683,
→˓TIGR02499

Output files

Output files are stored in /database_directory/find_genes/by_annotation/. For each function (node) that was included,
a nucleotide and protein and .FASTA file is created with sequences from the genes that are connected to the node.

• find_genes_by_annotation.log, relevant information about the extracted genes: node identifier, gene location,
homology group etc..

Find genes in region

Find genes of interest in the pangenome that can be (partially) found within a given region (partially). For each found
gene, relevant information, the nucleotide sequence and protein sequence is extracted.

Required arguments

--database-path/-dp Path to the database.
--regions-file/-rf A text file containing genome locations with on each line: a genome number, sequence
number, begin and end position, separated by a space.

Optional arguments

--mode partial Also retrieve genes that only partially overlap the input regions.

Example input file

Each line must have a genome number, sequence number, begin and end positions that are separated by a space.

195 1 477722 478426
71 10 17346 18056
138 47 159593 160300

74 Chapter 6. Contents



PanTools, Release 3.4.0

Example command

$ pantools find_genes_in_region -dp tomato_DB -rf regions.txt
$ pantools find_genes_in_region -dp tomato_DB -rf regions.txt --mode partial

Output files

Output files are stored in /database_directory/find_genes/in_region/. For each region that was included, a nucleotide
and protein and .FASTA file is created with sequences from the genes that are found within the region.

• find_genes_in_region.log, relevant information about the extracted genes: node identifier, gene location, ho-
mology group etc..

6.6.3 Functional annotations

The following functions can only be used when any type of functional annotation is added to the database.

Show GO

For a selection of ‘GO’ nodes, retrieves connected ‘mRNA’ nodes, child and all parent GO terms that are higher
in the GO hierarchy. This function follows the ‘is_a’ relationships of GO each node to their parent GO term until
the ‘biological process’, ‘molecular function’ or ‘cellular location’ node is reached. This can be is useful in case
InterProScan annotations were included, as these only add the most specific GO terms of the hierarchy to a sequence.

Required arguments

--database-path/-dp Path to the database

Requires either one of the following arguments

--node One or multiple identifiers of ‘GO’ nodes, seperated by a comma.
--name One or multiple GO term identifiers, seperated by a comma.

Example commands

$ pantools show_go -dp tomato_DB --node 15078,15079
$ pantools show_go -dp tomato_DB --name GO:0000001,GO:0000002,GO:0008982

6.6. Explore the pangenome 75



PanTools, Release 3.4.0

Output file

• show_go.txt, information of the selected GO node(s): the connected ‘mRNA’ nodes, the GO layer below, and
all layers above.

Compare GO

Check if and how similar two given GO terms are. For both nodes, follows the ‘is_a’ relationships up to their parent
GO terms until the ‘biological process’, ‘molecular function’ or ‘cellular location’ node is reached. After all parent
terms are found, the shared GO terms and their location in the hierarchy is reported.

Required arguments

--database-path/-dp Path to the database.

Requires either one of the following arguments

--node Two node identifiers of ‘GO’ nodes, seperated by a comma.
--name Two GO identifiers, seperated by a comma.

Example command

$ pantools compare_go -dp tomato_DB --name GO:0032775,GO:0006313
$ pantools compare_go -dp tomato_DB --node 741487,741488

Output file

Output files are stored in database_directory/function/

• compare_go.txt, information of the two GO nodes: the connected ‘mRNA’ nodes, the GO layer below, all layers
above and the shared GO terms between the two nodes.

6.6.4 Homology group information

Report all available information of one or multiple homology groups.

76 Chapter 6. Contents



PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the database.
--homology-groups/-hm A text file with homology group node identifiers, seperated by a comma

Optional arguments

--label Name of function identifiers from GO, PFAM, InterPro or TIGRAM. To find Phobius (P) or SignalP (S)
annotations, include: ‘secreted’ (P/S), ‘receptor’ (P/S), or ‘transmembrane’ (P).
--name One or multiple gene names, seperated by a comma.
--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.

Example command

$ pantools group_info -dp yeast_DB -hm core_groups.txt
$ pantools group_info -dp yeast_DB -hm core_groups.txt --label GO:0032775,GO:0006313 --
→˓name budC,estP

Output files

Output files are stored in database_directory/alignments/grouping_v?/groups/. For each homology group that was
included, a nucleotide and protein and .FASTA file is created with sequences found in all genomes.

• group_info.txt, relevant information for each homology group: number of copies per genome, gene names,
mRNA node identifiers, functions, protein sequence lengths, etc..

• group_functions.txt, full description of the functions found in homology groups

When function identifiers are included via --label

• groups_with_function.txt, homology group node identifiers from groups that match one of the input functions.

When gene names are included via --name

• groups_with_name.txt, homology group node identifiers from groups that match one of the input gene ames.

6.6.5 Sequence alignments

The manual for PanTools’ sequence alignment functionalities moved to a standalone page - Multiple Sequence Align-
ments.

6.6. Explore the pangenome 77



PanTools, Release 3.4.0

6.6.6 Matrix files

Several functions generate tables in a CSV file format. as tables that the following functions can work with. For
example, ANI scores, k-mer and gene distance used for constructing the Neighbour Joining phylogenetic trees, and the
identity and protein sequence similarity tables created by the alignment functions.

Order matrix

Transforms the CSV table to easy to read file by ordering the values in ascending order from low to high or descending
order when --mode desc is included in the command. If phenotype information is included in the header, a separate
file with the range of found values is created for each phenotype. If this information is not present (only genome
numbers in the header), use rename_matrix to change the headers.

Required argument

--database-path/-dp Path to the database.
--input-file/-af A CSV formatted matrix file.

Optional argument

--skip/-sk Skip over the values of a selection of genomes.
--reference/-ref Only include the values from a selection of genomes.
--mode asc or --mode desc Order the matrix in ascending or descending order (ascending is default).

Example command

$ pantools order_matrix -dp bacteria_DB -if bacteria_DB/ANI/fastANI/ANI_distance_matrix.
→˓csv
$ pantools order_matrix -dp bacteria_DB -if bacteria_DB/ANI/fastANI/ANI_distance_matrix.
→˓csv --mode desc

Output file

Output is written to the same directory as the selected input file

• ‘old file name’ + ‘_ORDERED’, ordered values of the original matrix file.

When phenotype information is present in the header

• ‘old file name’ + ‘_PHENOTYPE’, range of values per phenotype.

78 Chapter 6. Contents



PanTools, Release 3.4.0

Rename matrix

Rename the headers (first row and leftmost column) of CSV formatted matrix files. If no --phenotype is included,
headers are changed to only contain genome numbers.

Required arguments

--database-path/-dp Path to the database.
--input-file/-af a matrix file with numerical values.

Optional arguments

--phenotype/-ph A phenotype name, used to include phenotype information into the headers.
--skip/sk Exclude a selection of genomes from the new matrix file. --reference/-ref Only include a selection of
genomes in the new matrix file.
--mode no-numbers Exclude genome numbers from the headers.

Example command

$ pantools rename_matrix -dp pecto_DB -phenotype species -if pecto_DB/ANI/fastANI/ANI_
→˓distance_matrix.csv

Output file

Output is written to the same directory as the selected input file.

• ‘old file name’ + ‘_RENAMED’, the original matrix file with changed headers.

6.6.7 Retrieve regions, genomes or features

The two following functions allow users to retrieve genomic regions from the pangenome.

Retrieve regions

Retrieve the full genome sequence or genomic regions from the pangenome.

6.6. Explore the pangenome 79



PanTools, Release 3.4.0

Required arguments

--database-path/-dp Path to the database.
--regions-file/-rf A text file containing genome locations with on each line: a genome number, sequence
number, begin and end positions separated by a space.

Example command

$ pantools retrieve_regions -dp pecto_DB -rf regions.txt

Example input

To extract:

• Complete genome - Include a genome number

• An entire sequence - Include a genome number with sequence number

• A genomic region - Include a genome number, sequence number, begin and end positions that are separated by
a space. Place a minus symbol behind the regions to extract the reverse complement sequence of the region.

1
1 1
1 1 1 10000
1 1 1000 1500 -
195 1 477722 478426
71 10 17346 18056 -
138 47 159593 160300 -

Output file

A single FASTA file is created for all given locations and is stored in the database directory.

Retrieve features

To retrieve the sequence of annotated features from the pangenome.

Required arguments

--database-path/-dp Path to the database.
--feature-type or -ft The feature name; for example ‘gene’, ‘mRNA’, ‘exon’, ‘tRNA’, etc.

80 Chapter 6. Contents



PanTools, Release 3.4.0

Optional arguments

Use one of the following arguments to limit the sequence retrieval to a selection of genomes.

--skip/-sk Exclude a selection of genomes.
--reference/-ref Only include a selection of genomes.

Example command

$ pantools retrieve_features -dp pecto_DB --feature-type gene
$ pantools retrieve_features -dp pecto_DB --ft mRNA

Output files

For each genome a FASTA file containing the retrieved features will be stored in the database directory. For example,
genes.1.fasta contains all the genes annotated in genome 1.

6.7 Read mapping

6.7.1 Map

Map single or paired-end short reads to one or multiple genomes in the pangenome. One SAM or BAM file is generated
for each genome included in the analysis.

Required arguments

--database_path/-dp Path to the pangenome database.
-1 The first short-read archive in FASTQ format, which can be gz/bz2 compressed. This file can be precessed
interleaved by -il option.
--genome-numbers/-gn A text file containing genome numbers to map reads against in each line.

Optional arguments

-2 The second short-read archive in FASTQ format, which can be gz/bz2 compressed.
--out-format/-of SAM BAM none Writes the alignment files in BAM or SAM format or don’t write any output files.
--output-path/-op (default value: Database path determined by -dp) : Path to the output files.
--threads/-tn (default value: 1) : The number of parallel working threads.
--interleaved/-il Process the fastq file as an interleaved paired-end archive.
--raw-abundance-file/-raf The mapping_summary.txt file from a previous mapping run (random-best
competitive mode) for a better estimation of coverage in a metagenomic setting.
--alignment-mode or -am The alignment mode:

-1 : Competitive, none-bests
-2 : Competitive, random-best

6.7. Read mapping 81



PanTools, Release 3.4.0

-3 : Competitive, all-bests
1 : Normal, none-bests
2 : Normal, random-best (default)
3 : Normal, all-bests
0 : Normal, all-hits

Optional arguments that influence the mapping sensitivity

--very-fast/--fast/--sensitive/--very-sensitive Four settings that automatically set the parameters
controlling the sensitivity, ranging from least to most sensitive.
--min-mapping-identity*/-mmi (default value: 0.5, valid range: [0..1)) : The minimum acceptable identity of
the alignment.
--num-kmer-samples/-nks (default value: 15, valid range: [1..r-k+1]) : The number of kmers sampled from read.
--min-hit-length/-mhl (default value: 13, valid range: [10..100]) : The minimum acceptable length of
alignment after soft-clipping.
--max-alignment-length/-mal (default value: 1000, valid range: [50..5000]) : The maximum acceptable length
of alignment.
--max-fragment-length/-mfl (default value: 2000, valid range: [50..5000]) : The maximum acceptable length
of fragment.
--max-num-locations/-mnl (default value: 15, valid range: [1..100]) : The maximum number of location of
candidate hits to examine.
--alignment-band/-ab (default value: 5, valid range: [1..100]) : The length of bound of banded alignment.
--clipping-stringency/-ci (default value: 1) : The stringency of soft-clipping.

0 : no soft clipping
1 : low
2 : medium
3 : high

Example input files

FASTQ file

@SRR13153715.1 1/1
TGGTCATACAGCAAAGCATAATTGTCACCATTACTATGGCAATCAAGCCAGCTATAAAACCTAGCCAAATGTACCATGGCCATTTTATATACTGCTCATACTTTCCAAGTTCTTGGAGATCGAT
+
EEEEEEEEEEEEEEEAEEEE/EEEEE/AEEEEEEEEEEEEEE/EE/EEE/<EEEEEEE/
→˓EEEEEEEEEEEEEAEEEEEAEEEEEAEEAEEEEEEA<AAAEEAEEA<EE/EEEEAEAEA/EEAA/

Genome numbers file

1
2
5

82 Chapter 6. Contents



PanTools, Release 3.4.0

Example commands

$ pantools map -dp arabidopsis_DB -1 ERR031564_1.fastq --reference 1-5
$ pantools map -dp arabidopsis_DB -1 ERR031564_1.fastq -gn genome_numbers.txt
$ pantools map -dp arabidopsis_DB -1 interleaved_reads.fastq --interleaved -gn genome_
→˓numbers.txt
$ pantools map -dp arabidopsis_DB -1 ERR031564_1.fastq -2 ERR031564_2.fastq -gn genome_
→˓numbers.txt

Output files

• mapping_summary.txt, number of mapped and unmapped reads per genome

• One SAM or BAM file is generated for each genome included in the analysis.

6.8 Querying the pangenome

Cypher is Neo4j’s graph query language that lets you ask specific questions or retrieve data from the graph database.
The Cypher query language depicts patterns of nodes and relationships and filters those patterns based on labels and
properties. While using node and relationship patterns in databases queries may seem a little daunting, it is easy to pick
up! This page contains some example queries to help you get started. Feel free to email us if you have any question
regarding Cypher queries.

More information on Neo4j and the Cypher language:

Neo4j Cypher Manual v3.5
Neo4j Cypher Refcard
Neo4j API

Match and return 100 nucleotide nodes

MATCH (n:nucleotide) RETURN n LIMIT 100

Find all the genome nodes

MATCH (n:genome) RETURN n

Retrieve the pangenome node

MATCH (n:pangenome) RETURN n

Match and return 100 genes

MATCH (g:gene) RETURN g LIMIT 100

Match and return 100 genes and order them by length

MATCH (g:gene) RETURN g ORDER BY g.length DESC LIMIT 100

6.8. Querying the pangenome 83

https://neo4j.com/docs/developer-manual/3.5/cypher/
http://neo4j.com/docs/cypher-refcard/3.5/
https://neo4j.com/developer/


PanTools, Release 3.4.0

The same query as before but results are now returned in a table

MATCH (g:gene) RETURN g.name, g.address, g.length ORDER BY g.length DESC LIMIT 100

Return genes which are between 100 and 250 bp. This can also be applied to other features such as exons introns
or CDS.

MATCH (g:gene) where g.length > 100 AND g.length < 250 RETURN * LIMIT 100

Find genes located on first genome

MATCH (g:gene) WHERE g.address[0] = 1 RETURN * LIMIT 100

Find genes located on first genome and first sequence

MATCH (g:gene) WHERE g.address[0] = 1 AND g.address[1] = 1 RETURN * LIMIT 100

Obtain genes between 100 and 250 nucleotides

MATCH (g:gene) where g.length > 100 AND g.length < 250 RETURN *

Return pfam identifiers for genes between 100 and 250 nucleotides long

match (n:mRNA)--(m:pfam) where n.length > 100 and n.length < 150 return m.id

Return all genes for a specific contig and count them

MATCH (n:gene) WHERE n.address[0] = 1 and n.address[1] = 1 RETURN count(n)

Return all genes genes between 1000-1500 nucleotides and order them by length

MATCH (n:gene) WHERE n.length > 1000 and n.length < 1500 RETURN n order by n.length DESC

Returns the homology group matching your gene of interest

MATCH (n:homology_group)--(m:mRNA)--(g:gene) WHERE g.name = 'GENE\_NAME' RETURN *

Returns the genes of genome 1 that don’t have a homolog in a the other genome

MATCH (n:homology_group)--(m:mRNA)--(g:gene) where n.num_members = 1 and g.genome = 1␣
→˓RETURN g

Retrieve unique GO identifiers for mRNA’s with a signal peptide

MATCH (m:mRNA)--(g:GO) where m.signalp_signal_peptide = true RETURN DISTINCT m.id, g.id

Return all sequence nodes for a specific contig

MATCH (n)-[r]->() WHERE exists (r.'a1\_1') and (n:degenerate or n:node) RETURN id(n), n.
→˓sequence , r.'a1\_1'

Return all sequence nodes for a specific contig within the range of position 1000 and 2000

MATCH (n)-[r]->() WHERE exists (r.'a1\_1') and (n:degenerate or n:node) and r.'a1'\_1[0]␣
→˓> 1000 and r.'a1\_1'[0] < 2000 RETURN id(n), n.sequence, r.'a1\_1'

Find SNP bubbles in the graph. For simplification we only use the FF relation

84 Chapter 6. Contents



PanTools, Release 3.4.0

MATCH p= (n:nucleotide) -[:FF]-> (a1)-[:FF]->(m:nucleotide) <-[:FF]-(b1) <-[:FF]- (n)␣
→˓return * limit 50

6.9 Differences between pangenome and panproteome

PanTools offers functionalities to build and analyze a pangenome or panproteome.

A pangenome is constructed from genome and annotation files. First, genome sequences are k-merized and compressed
into a De Bruijn graph. Genes and other annotation features from annotation files are integrated into the pangenome as
‘gene’, ‘mRNA’ and ‘CDS’ nodes. Gene start and stop positions are annotated in the graph as relationships and connect
the annotation layer to the nucleotide layer. The protein sequences can be clustered into homology groups and connect
homologous proteins from different genomes.

A panproteome is built from protein sequences only, ignoring the underlying genome structure. Again, the protein
sequences are clustered into homology groups which serve as main input for many functionalities.

In addition to the single layer in panproteomes and three layers in pangenomes, a functional layer can be included in
both databases. This layer consists of multiple functional annotation databases (e.g. GO, PFAM) and connects proteins
with a shared function.

Since there is only a protein layer and functional layer present in panproteomes, not all functions can be utilized. See
the table below for which functions can be used for pangenomes and panproteomes.

Fig. 6.8: Schematic of genome, annotation, and protein layer of a pangenome database. Figure taken from Efficient
inference of homologs in large eukaryotic pan-proteomes

6.9. Differences between pangenome and panproteome 85



PanTools, Release 3.4.0

6.9.1 Available functions

Construct pangenome

Function Pangenome Panproteome
Build pangenome YES NO
Build panproteome NO YES
Add annotations YES NO
Add genomes YES NO
Group YES YES
Optimal grouping YES YES
Change grouping YES YES
BUSCO protein YES YES
Add phenotype YES YES
Add functional annotations YES YES
Add antiSMASH YES NO
Remove nodes YES YES
Move or remove grouping YES YES

Pangenome characterization

Function Pangenome Panproteome
Statistics YES YES
Gene classification YES YES
Core unique thresholds YES YES
Grouping overview YES YES
Pangenome size genes YES YES
Pangenome size k-mers YES NO
K-mer classification YES NO
Functional classification YES YES
Functional annotation overview YES YES

Explore the pangenome

Function Pangenome Panproteome
Locate genes YES NO
mRNAs connected to function YES NO
Find gene YES NO
GO enrichment YES YES
Show GO YES YES
Compare GO YES YES
Compare BGC YES NO
Alignment of homology group YES YES
Alignment of multiple homology groups YES YES
Alignment of genomic regions YES NO
Order matrix YES YES
Rename matrix YES YES
Retrieve genomes YES NO
Retrieve regions YES NO
Retrieve features YES NO

86 Chapter 6. Contents



PanTools, Release 3.4.0

Phylogeny

Function Pangenome Panproteome
Core SNP tree YES YES
K-mer distance tree YES NO
Gene distance tree YES YES
ANI tree YES NO
MLSA YES NO
Rename phylogeny YES YES
Create tree template YES YES

Read mapping

Function Pangenome Panproteome
Map YES NO

6.10 Part 1. Install PanTools

For instructions on how to install PanTools, see Installing and configuring the required software.

6.11 Part 2. Build your own pangenome using PanTools

To demonstrate the main functionalities of PanTools we use a small chloroplasts dataset to avoid long construction
times.

Genome Chloroplast genome Accession Length Genes tRNAs
1 Cucumis sativus (cucumber) NC_007144.1 155,293 bp 85 37
2 Oryza sativa Indica 93-11 (rice) NC_008155.1 134,496 bp 100 40
3 Solanum lycopersicum (tomato) NC_007898.3 155,461 bp 87 45
4 Solanum tuberosum (potato) NC_008096.2 155,296 bp 84 45
5 Zea mays (maize) NC_001666.2 140,384 bp 111 38

Download the chloroplast fasta and gff files here or via wget.

$ wget http://bioinformatics.nl/pangenomics/tutorial/chloroplasts.tar.gz
$ tar -xvzf chloroplasts.tar.gz #unpack the archive

We assume a PanTools alias was set during the installation. This allows PanTools to be executed with pantools rather
than pantools/target/pantools-3.4.0.jar. If you don’t have an alias, either set one or replace the pantools
command with the full path to the .jar file in the tutorials.

6.10. Part 1. Install PanTools 87

https://www.ncbi.nlm.nih.gov/nuccore/NC_007144.1/
https://www.ncbi.nlm.nih.gov/nuccore/NC_008155.1/
https://www.ncbi.nlm.nih.gov/nuccore/NC_007898.3/
https://www.ncbi.nlm.nih.gov/nuccore/NC_008096.2/
https://www.ncbi.nlm.nih.gov/nuccore/NC_001666.2/
http://bioinformatics.nl/pangenomics/tutorial/chloroplasts.tar.gz


PanTools, Release 3.4.0

6.11.1 BUILD, ANNOTATE and GROUP

We start with building a pangenome using four of the five chloroplast genomes. For this you need a text file which
directs PanTools to the FASTA files. Call your text file genome_locations.txt and include the following lines:

YOUR_PATH/C_sativus.fasta
YOUR_PATH/O_sativa.fasta
YOUR_PATH/S_lycopersicum.fasta
YOUR_PATH/S_tuberosum.fasta

Make sure that ‘YOUR_PATH’ is the full path to the input files! Then run PanTools with the build_pangenome function
and include the text file

$ pantools build_pangenome -dp chloroplast_DB -gf genome_locations.txt

Did the program run without any error messages? Congratulations, you’ve built your first pangenome! If not? Make
sure your Java version is up to date and kmc is executable. The text file should only contain full paths to FASTA files,
no additional spaces or empty lines.

Adding additional genomes

PanTools has the ability to add additional genomes to an already existing pangenome. To test the function of PanTools,
prepare a text file containing the path to the Maize chloroplast genome. Call your text file fifth_genome_location.txt
and include the following line to the file:

YOUR_PATH/Z_mays.fasta

Run PanTools on the new text file and use the add_genomes function

$ pantools add_genomes -dp chloroplast_DB -gf fifth_genome_location.txt

Adding annotations To include gene annotations to the pangenome, prepare a text file containing paths to the GFF files.
Call your text file annotation_locations.txt and include the following lines into the file:

1 YOUR_PATH/C_sativus.gff3
2 YOUR_PATH/O_sativa.gff3
3 YOUR_PATH/S_lycopersicum.gff3
4 YOUR_PATH/S_tuberosum.gff3
5 YOUR_PATH/Z_mays.gff3

Run PanTools using the add_annotations function and include the new text file

$ pantools add_annotations -dp chloroplast_DB -af annotation_locations.txt -ca

PanTools attached the annotations to our nucleotide nodes so now we can cluster them.

88 Chapter 6. Contents



PanTools, Release 3.4.0

Homology grouping

PanTools can infer homology between the protein sequences of a pangenome and cluster them into homology groups.
Multiple parameters can be set to influence the sensitivity but for now we use the group functionality with default
settings.

$ pantools group -dp chloroplast_DB

6.11.2 Adding phenotypes (requires PanTools v3)

Phenotype values can be Integers, Double, String or Boolean values. Create a text file phenotypes.txt.

Genome,Solanum
1,false
2,false
3,true
4,true
5,false

And use add_phenotypes to add the information to the pangenome.

$ pantools add_phenotypes -dp chloroplast_DB -ph phenotypes.txt

6.11.3 RETRIEVE functions

Now that the construction is complete, lets quickly validate if the construction was successful and the database can be
used. To retrieve some genomic regions, prepare a text file containing genomic coordinates. Create the file regions.txt
and include the following for each region: genome number, contig number, start and stop position and separate them
by a single space

1 1 200 500
2 1 300 700
3 1 1 10000
3 1 1 10000 -
4 1 9999 15000
5 1 100000 110000

Now run the retrieve_regions function and include the new text file

$ pantools retrieve_regions -dp chloroplast_DB --regions-file regions.txt

Take a look at the extracted regions that are written to the chloroplast_DB/retrieval/regions/ directory.

To retrieve entire genomes, prepare a text file genome_numbers.txt and include each genome number on a separate
line in the file

1
3
5

6.11. Part 2. Build your own pangenome using PanTools 89



PanTools, Release 3.4.0

Use the retrieve_regions function again but include the new text file

$ pantools retrieve_regions -dp chloroplast_DB -rf genome_numbers.txt

Genome files are written to same directory as before. Take a look at one of the three genomes you have just retrieved.

In part 3 of the tutorial we explore the pangenome you just built using the Neo4j browser and the Cypher language.

6.12 Part 3. Explore the pangenome using the Neo4j browser

Did you skip part 2 of the tutorial or were you unable to build the chloroplast pangenome? Download the pre-
constructed pangenome here or via wget.

$ wget http://bioinformatics.nl/pangenomics/tutorial/chloroplast_DB.tar.gz
$ tar -xvzf chloroplast_DB.tar.gz

6.12.1 Configuring Neo4j

Set the full path to the chloroplast pangenome database by opening neo4j.conf (’neo4j-community-
3.5.30/conf/neo4j.conf ’) and include the following line in the config file. Please make sure there is always only
a single uncommented line with ‘dbms.directories.data’.

#dbms.directories.data=/YOUR_PATH/any_other_database
dbms.directories.data=/YOUR_PATH/chloroplast_DB

Allowing non-local connections
To be able to run Neo4j on a server and have access to it from anywhere, some additional lines in the config file must
be changed.

• Uncomment the four following lines in neo4j-community-3.5.30/conf/neo4j.conf.

• Replace 7686, 7474, and 7473 by three different numbers that are not in use by other people on your server. In
this way, everyone can have their own database running at the same time.

#dbms.connectors.default_listen_address=0.0.0.0
#dbms.connector.bolt.listen_address=:7687
#dbms.connector.http.listen_address=:7474
#dbms.connector.https.listen_address=:7473

Lets start up the Neo4j server!

$ neo4j start

Start Firefox (or a web browser of your own preference) and let it run on the background.

$ firefox &

90 Chapter 6. Contents

http://bioinformatics.nl/pangenomics/tutorial/chloroplast_DB.tar.gz


PanTools, Release 3.4.0

In case you did not change the config to allow non-local connections, browse to http://localhost:7474. Whenever you
did change the config file, go to server_address:7474, where 7474 should be replaced with the number you chose
earlier.

If the database startup was successful, a login terminal will appear in the webpage. Use ‘neo4j’ both as username and
password. After logging in, you are requested to set a new password.

6.12.2 Exploring nodes and edges in Neo4j

Go through the following steps to become proficient in using the Neo4j browser and the underlying PanTools data
structure. If you have any difficulty trouble finding a node, relationship or any type of information, download and use
this visual guide.

1. Click on the database icon on the left. A menu with all node types and relationship types will appear.

2. Click on the ‘gene’ button in the node label section. This automatically generated a query. Execute the query.

3. The LIMIT clause prevents large numbers of nodes popping up to avoid your web browser from crashing. Set
LIMIT to 10 and execute the query.

4. Hover over the nodes, click on them and take a look at the values stored in the nodes. All these features (except
ID) were extracted from the GFF annotation files. ID is an unique number automatically assigned to nodes and
relationships by Neo4j.

5. Double-click on the matK gene node, all nodes with a connection to this gene node will appear. The nodes
have distinct colors as these are different node types, such as mRNA, CDS, nucleotide. Take a look at the node
properties to observe that most values and information is specific to a certain node type.

6. Double-click on the matK mRNA node, a homology_group node should appear. These type of nodes connect
homologous genes in the graph. However, you can see this gene did not cluster with any other gene.

7. Hover over the start relation of the matK gene node. As you can see information is not only stored in nodes,
but also in relationships! A relationship always has a certain direction, in this case the relation starts at the gene
node and points to a nucleotide node. Offset marks the location within the node.

8. Double-click on the nucleotide node at the end of the ‘start’ relationship. An in- and outgoing relation appear
that connect to other nucleotide nodes. Hover over both the relations and compare them. The relations holds the
genomic coordinates and shows this path only occurs in contig/sequence 1 of genome 1.

9. Follow the outgoing FF-relationship to the next nucleotide node and expand this node by double-clicking. Three
nodes will pop up this time. If you hover over the relations you see the coordinates belong to other genomes as
well. You may also notice the relationships between nucleotide nodes is always a two letter combination of F
(forward) and R (reverse) which state if a sequence is reverse complemented or not. The first letter corresponds
to the sequence of the node at the start of the relation where the second letters refers to the sequence of the end
node.

10. Finally, execute the following query to call the database scheme to see how all node types are connected to each
other: CALL db.schema(). The schema will be useful when designing your own queries!

6.12. Part 3. Explore the pangenome using the Neo4j browser 91

http://www.bioinformatics.nl/pangenomics/tutorial/neo4j_browser.tar.gz


PanTools, Release 3.4.0

6.12.3 Query the pangenome database using CYPHER

Cypher is a declarative, SQL-inspired language and uses ASCII-Art to represent patterns. Nodes are represented by
circles and relationships by arrows.

• The MATCH clause allows you to specify the patterns Neo4j will search for in the database.

• With WHERE you can add constraints to the patterns described.

• In the RETURN clause you define which parts of the pattern to display.

Cypher queries

Match and return 100 nucleotide nodes

MATCH (n:nucleotide) RETURN n LIMIT 100

Find all the genome nodes

MATCH (n:genome) RETURN n

Find the pangenome node

MATCH (n:pangenome) RETURN n

Match and return 100 genes

MATCH (g:gene) RETURN g LIMIT 100

Match and return 100 genes and order them by length

MATCH (g:gene) RETURN g ORDER BY g.length DESC LIMIT 100

The same query as before but results are now returned in a table

MATCH (g:gene) RETURN g.name, g.address, g.length ORDER BY g.length DESC LIMIT 100

Return genes which are longer as 100 but shorter than 250 bp (this can also be applied to other features such as
exons introns or CDS)

MATCH (g:gene) where g.length > 100 AND g.length < 250 RETURN * LIMIT 100

Find genes located on first genome

MATCH (g:gene) WHERE g.address[0] = 1 RETURN * LIMIT 100

Find genes located on first genome and first sequence

MATCH (g:gene) WHERE g.address[0] = 1 AND g.address[1] = 1 RETURN * LIMIT 100

92 Chapter 6. Contents



PanTools, Release 3.4.0

Homology group queries

Return 100 homology groups

MATCH (h:homology_group) RETURN h LIMIT 100

Match homology groups which contain two members

MATCH (h:homology_group) WHERE h.num_members = 2 RETURN h

Match homology groups and ‘walk’ to the genes and corresponding start and end node

MATCH (h:homology_group)-->(f:feature)<--(g:gene)-->(n:nucleotide) WHERE h.num_members =␣
→˓2 RETURN * LIMIT 25

Turn off autocomplete by clicking on the button on the bottom right. The graph falls apart because relations were not
assigned to variables.

The same query as before but now the relations do have variables

MATCH (h:homology_group)-[r1]-> (f:feature) <-[r2]-(g:gene)-[r3]-> (n:nucleotide) WHERE␣
→˓h.num_members = 2 RETURN * LIMIT 25

When you turn off autocomplete again only the ‘is_similar_to’ relation disappears since we did not call it

Find homology group that belong to the rpoC1 gene

MATCH (n:homology_group)--(m:mRNA)--(g:gene) WHERE g.name = 'rpoC1' RETURN *

Find genes on genome 1 which don’t show homology

MATCH (n:homology_group)--(m:mRNA)--(g:gene) WHERE n.num_members = 1 and g.genome = 1␣
→˓RETURN *

Structural variant detection

Find SNP bubbles (for simplification we only use the FF relation)

MATCH p= (n:nucleotide) -[:FF]-> (a1)-[:FF]->(m:nucleotide) <-[:FF]-(b1) <-[:FF]- (n)␣
→˓return * limit 50

The same query but returning the results in a table

MATCH (n:nucleotide) -[:FF]-> (a1)-[:FF]->(m:nucleotide) <-[:FF]-(b1) <-[:FF]- (n)␣
→˓return a1.length,b1.length, a1.sequence, b1.sequence limit 50

Functions such as count(), sum() and stDev() can be used in a query.

The same SNP query but count the hits instead of displaying them

MATCH p= (n:nucleotide) -[:FF]-> (a1)-[:FF]->(m:nucleotide) <-[:FF]-(b1) <-[:FF]- (n)␣
→˓return count(p)

6.12. Part 3. Explore the pangenome using the Neo4j browser 93



PanTools, Release 3.4.0

Hopefully you know have some feeling with the Neo4j browser and cypher and you’re inspired to create your own
queries!

When you’re done working in the browser, close the database (by using the command line again).

$ neo4j stop

More information on Neo4j and the cypher language:
Neo4j Cypher Manual v3.5
Neo4j Cypher Refcard
Neo4j API

In part 4 of the tutorial we explore some of the functionalities to analyze the pangenome.

6.13 Part 4. Characterization

6.13.1 Part 4 preparation

PanTools v3 is required to follow this part of the tutorial. In addition, MAFFT and R (and a few packages) need to be
installed and set to your $PATH. Everything should already be correctly installed if you use the conda environment.
Validate if the tools are executable by using the following commands.

$ Rscript --help
$ mafft -h

We assume a PanTools alias was set during the installation. This allows PanTools to be executed with pantools rather
than pantools/target/pantools-3.4.0.jar. If you don’t have an alias, either set one or replace the pantools
command with the full path to the .jar file in the tutorials.

94 Chapter 6. Contents

https://neo4j.com/docs/developer-manual/3.5/cypher/
http://neo4j.com/docs/cypher-refcard/3.5/
https://neo4j.com/developer/


PanTools, Release 3.4.0

6.13.2 Input data

Genome Name Accession Length Sequences Genes
1

P. odor-
iferum
Q166

GCF_002904195.15.09 Mb 66 4510

2
P. fontis

M022

GCF_000803215.14.15 Mb 107 3723

3
P. polaris

S4.16.03.2B

GCF_003595035.14.86 Mb 65 4442

4
P.

brasiliense
S2

GCF_000808375.14.84 Mb 37 4367

5
P.

brasiliense
Y49

GCF_000808115.14.70 Mb 31 4231

6
D. dadantii

3937

GCF_000147055.14.92 Mb 1 4281

To demonstrate how to use the PanTools functionalities we use a small dataset of six bacteria to avoid long runtimes.
Download a pre-constructed pangenome or test your new skills and construct a pangenome yourself using the fasta and
gff files.

Option 1: Download separate genome and annotation files

$ wget http://bioinformatics.nl/pangenomics/tutorial/pecto_dickeya_input.tar.gz
$ tar -xvzf pecto_dickeya_input.tar.gz
$ gzip -d pecto_dickeya_input/annotations/*
$ gzip -d pecto_dickeya_input/genomes/*
$ gzip -d pecto_dickeya_input/functions/*

$ pantools build_pangenome -dp pecto_dickeya_DB -gf pecto_dickeya_input/genomes.txt
$ pantools add_annotations -dp pecto_dickeya_DB -af pecto_dickeya_input/annotations.txt -
→˓ca
$ pantools group -dp pecto_dickeya_DB -rn 4 -tn 10

Option 2: Download the pre-constructed pangenome

$ wget http://bioinformatics.nl/pangenomics/tutorial/pecto_dickeya_DB.tar.gz
$ tar -xvzf pecto_dickeya_DB.tar.gz

6.13. Part 4. Characterization 95

https://www.ncbi.nlm.nih.gov/assembly/GCF_002904195.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000803215.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_003595035.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000808375.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000808115.1
https://www.ncbi.nlm.nih.gov/assembly/GCF_000147055.1


PanTools, Release 3.4.0

6.13.3 Adding phenotype/metadata to the pangenome

Before starting with the analysis, we will add some phenotype data to the pangenome. Phenotypes allow you to find
similarities for a group of genomes sharing a phenotype as well as identifying variation between different phenotypes.
Below is a textfile with data for three phenotypes. The third phenotype, low_temperature, is in this case a made up
example! It states whether the strain is capable of growing on (extreme) low temperatures. The phenotype file can
be found inside the database directory or create a new file using the text from the box below. Add the phenotype
information to the pangenome using add_phenotype.

Genome, species, strain_name, low_temperature
1,P. odoriferum,P. odoriferum Q166, false
2,P. fontis, P. fontis M022, true
3,P. polaris,P. polaris S4.16.03.2B, false
4,P. brasiliense, P. brasiliense S2, true
5,P. brasiliense, P. brasiliense Y49, false
6,D. dadantii, D. dadantii 3937,?

$ pantools add_phenotype -dp pecto_dickeya_DB -ph pecto_dickeya_input/phenotypes.txt

6.13.4 Metrics and general statistics

After building or uncompressing the pangenome, run the metrics functionality to produce various statistics that should
verify an errorless construction.

$ pantools metrics -dp pecto_dickeya_DB

Open metrics_per_genome.csv with a spreadsheet tool (Excel, Libreoffice, Google sheets) and make sure the columns
are split on commas. You may easily notice the many empty columns in this table as these type of annotations or features
are not included in the database (yet). Functional annotations are incorporated later in this tutorial. Columns for features
like exon and intron will remain empty as bacterial coding sequences are not interrupted.

6.13.5 Gene classification

With the gene_classification functionality you are able to organize the gene repertoire into the core, accessory or unique
part of the pangenome.

• Core, a gene is present in all genomes

• Unique, a gene is present in a single genome

• Accessory, a gene is present in some but not all genomes

$ pantools gene_classification -dp pecto_dickeya_DB

Take a look in gene_classification_overview.txt. Here you can find the number of classified homology groups and
genes on a pangenome level but also for individual genomes.

Open additional_copies.csv with a spreadsheet tool. This file can be useful to identify duplicated genes in relation to
other genomes.

The default criteria to call a group core is presence in all genomes where unique is only allowed to be present in one
genome. These two categories are highly influenced by annotation quality, especially in large pangenomes. Luckily,

96 Chapter 6. Contents



PanTools, Release 3.4.0

the threshold for core and unique groups can easily be adjusted. Let’s consider genes to be core when present in only
five of the six genomes by setting the --core-threshold argument.

$ pantools gene_classification -dp pecto_dickeya_DB --core-threshold 85

Look in gene_classification_overview.txt again to observe the increase of core groups/genes at the cost of accessory
groups.

For this pangenome, the Dickeya genome is considered an outgroup to the five Pectobacterium genomes. While this
outgroup is needed to root and analyze phylogenetic trees (tutorial part 5), it affects the number classified groups for
the all other genomes. Use --reference or --skip to exclude the Dickeya genome.

$ pantools gene_classification -dp pecto_dickeya_DB --reference 1,2,3,4,5
$ pantools gene_classification -dp pecto_dickeya_DB --skip 6

Take a look in gene_classification_overview.txt one more time to examine the effect of excluding this genome. The
total number of groups in the analysis is lower now but the number of core and unique genes have increased for the five
remaining genomes.

When phenotype information is used in the analysis, three additional categories can be assigned to a group:

• Shared, a gene present in all genomes of a phenotype

• Exclusive, a gene is only present in a certain phenotype

• Specific, a gene present in all genomes of a phenotype and is also exclusive

Include a --phenotype argument to find genes that are exclusive for a certain species.

$ pantools gene_classification -dp pecto_dickeya_DB --phenotype species

Open gene_classification_phenotype_overview.txt to see the number of classified groups for the species phenotype.

Open phenotype_disrupted.csv in a spreadsheet tool. This file explains exactly why a homology groups is labeled as
phenotype shared and not specific.

Open phenotype_additional_copies.csv in a spreadsheet tool. Similarly to phenotype_additional.csv this file shows
groups where all genomes of a certain phenotype have additional gene copies to (at least one of) the other phenotypes.

Each time you run the gene_classification function, multiple files are created that contain node identifiers of a certain
homology group category. These files can be given to other PanTools functions for a downstream analysis, for example,
sequence alignment, phylogeny, or GO enrichment. We will use one of the files later in this tutorial.

6.13. Part 4. Characterization 97



PanTools, Release 3.4.0

6.13.6 Pangenome structure

With the previous functionality we identified the core, accessory and unique parts of the pangenome. Now we will
use the pangenome_size_genes function to observe how these numbers are reached by simulating the growth of the
pangenome. Simulating the growth helps explaining if a pangenome should be considered open or closed. An
pangenome is called open as long as a significant number of new (unique) genes are added to the total gene reper-
toire. The openness of a pangenome is usually tested using Heap’s law. Heaps’ law (a power law) can be fitted to the
number of new genes observed when increasing the pangenome by one random genome. The formula for the power
law model is n = k x N-a, where n is the newly discovered genes, N is the total number of genomes, and k and a are the
fitting parameters. A pangenome can be considered open when a < 1 and closed if a > 1.

The outcome of the function can again be controlled through command line arguments. Genomes can be excluded from
the analysis with --skip. You can set the number of iterations with --value. Because iterations can be assigned to
different threads, including multiple threads with --threads is recommended.

$ pantools pangenome_structure_genes -dp pecto_dickeya_DB -tn 4

The current test set of six bacterial genomes is not representative of a full-sized pangenome. Therefore we prepared the
results for the structure simulation on a set of 197 Pectobacterium genomes. The runtime of the analysis using 10.000
loops and 24 threads was 1 minute and 54 seconds. Download the files here, unpack the archive and take a look at the
files.

$ wget wget http://bioinformatics.nl/pangenomics/tutorial/pectobacterium_structure.tar.gz
$ tar -xvf pectobacterium_structure.tar.gz

Normally you still have to run the R scripts to create the output figures and determine the openness of the pangenome.

cd pectobacterium_structure
$ Rscript pangenome_growth.R
$ Rscript gains_losses_median_and_average.R
$ Rscript heaps_law.R

Take a look at the plot. In core_accessory_unique_size.png, the number of classified groups are plotted for any of
the genome combination that occured during the simulation. For the core_accessory_size.png plots, the number of
unique groups is combined with accessory groups.

The gains_losses.png files display the average and mean group gain and loss between different pangenome sizes. The
line of the core starts below zero, meaning for every random genome added, the core genome decreases by a number
of X genes.

6.13.7 Functional annotations

PanTools is able to incorporate functional annotations into the pangenome by reading output of various functional
annotation tools. In this tutorial we only include annotations from InterProScan. Please see the add_functions manual
to check which other tools are available. To include the annotations, create a file functions.txt using text from the box
below and add it to the command line argument.

1 YOUR_PATH/GCF_002904195.1.gff3
2 YOUR_PATH/GCF_000803215.1.gff3
3 YOUR_PATH/GCF_003595035.1.gff3
4 YOUR_PATH/GCF_000808375.1.gff3
5 YOUR_PATH/GCF_000808115.1.gff3
6 YOUR_PATH/GCA_000147055.1.gff3

98 Chapter 6. Contents



PanTools, Release 3.4.0

$ pantools add_functions -dp pecto_dickeya_DB -if functions.txt

PanTools will ask you to download the InterPro database. Follow the steps and execute the program again.

The complete GO, PFAM, Interpro and TIGRFAM, databases are now integrated in the graph database after. Genes with
a predicted function have gained a relationship to that function node. Retrieving a set of genes that share a function
is now possible through a simple cypher query. If you would run metrics again, statistics for these type functional
annotations are calculated. To create a summary table for each type of functional annotation, run function_overview.

$ pantools function_overview -dp pecto_dickeya_DB

In function_overview_per_group.csv you can navigate to a homology group or gene to see the connected functions.
You can also search in the opposite direction, use one of the created overview files for a type of functional annotation
and quickly navigate to a function of interest to find which genes are connected.

GO enrichment

We go back to the output files from gene classification that only contain node identifiers. We can retrieve group functions
by providing one the files to group_info with the --homology-groups argument. However, interpreting groups by
assessing each one individually is not very practical. A common approach to discover interesting genes from a large set
is GO-enrichment. This statistical method enables the identification of genes sharing a function that are significantly
over or under-represented in a given gene set compared to the rest of the genome. Let’s perform a GO enrichment on
homology groups of the core genome.

Phenotype: P._brasiliense, 2 genomes, threshold of 2 genomes
1278537,1282642,1283856,1283861,1283862,1283869,1283906,1283921,1283934,1283941,1283945,
→˓1283946

$ pantools group_info -dp pecto_dickeya_DB -hm brasiliense_groups.csv
$ pantools go_enrichment -dp pecto_dickeya_DB -hm brasiliense_groups.csv

Open go_enrichment.csv with a spreadsheet tool. This file holds GO terms found in at least one of the genomes, the
p-value of the statistical test and whether it is actually enriched after the multiple testing correction. as this is different
for each genome a function might enriched in one genome but not in another.

A directory with seperate output files is created for each genome, open go_enrichment.csv for the genome 4 or 5 in a
spreedsheet. Also take a look at the PDF files that visualize part of the Gene ontology hierarchy.

Classifying functional annotations

Similarly to classifying gene content, functional annotations can be categorized using functional_classification. This
tool provides an easy way to identify functions shared by a group of genomes of a certain phenotype but can also be
used to identify core or unique functions. The functionality uses the same set of arguments as gene_classification.
You can go through the same steps again to see the effect of changing the arguments.

$ pantools functional_classification -dp pecto_dickeya_DB
$ pantools functional_classification -dp pecto_dickeya_DB -ct 85
$ pantools functional_classification -dp pecto_dickeya_DB --skip 6
$ pantools functional_classification -dp pecto_dickeya_DB -ph species

6.13. Part 4. Characterization 99



PanTools, Release 3.4.0

6.13.8 Sequence alignment

In the final part of this tutorial we will test the alignment function by aligning homology groups. PanTools is able to
align genomic regions, genes and proteins to identify SNPs or amino acid changes with msa.

Start with the alignment of protein sequences from the 12 P. brasiliense specific homology groups.

$ pantools msa -dp pecto_dickeya_DB -hm brasiliense_groups.csv --mode protein --method␣
→˓per_group

Go to the pecto_dickeya_DB/alignments/grouping_v1/groups/ directory and select one of homology groups and
check if you can find the following files

• The alignments are written to prot_trimmed.fasta and prot_trimmed.afa.

• A gene tree is written to prot_trimmed.newick
• prot_trimmed_variable_positions.csv located in the var_inf_positions subdirectory. This matrix holds every

variable position of the alignment; the rows are the position in the alignment and the columns are the 20 amino
acids and gaps.

• The identity and similarity (for proteins) is calculated between sequences and written to tables in the similar-
ity_identity subdirectory.

Run the function again but include the --no_trimming argument.

$ pantools msa -dp pecto_dickeya_DB -hm brasiliense_groups.csv --mode protein --method␣
→˓per_group --no-trimming

The output files are generated right after the first alignment without trimming the sequences first. The file names differ
from the trimmed alignments by the ’_trimmed’ substring.

Run the function again but exclude the --mode protein and --no_trimming arguments. When no additional argu-
ments are included to the command, both nucleotide and protein sequences are aligned two consecutive times.

$ pantools msa -dp pecto_dickeya_DB -hm brasiliense_groups.csv --method per_group

Again, the same type of files are generated but the output files from nucleotide sequence can be recognized by the ‘nuc_’
substrings. The matrix in nuc_trimmed_variable_positions.csv now only has columns for the four nucleotides and
gaps.

Finally, run the function one more time but include a phenotype. This allows you to identify phenotype specific SNPs
or amino acid changes.

$ pantools msa -dp pecto_dickeya_DB -hm brasiliense_groups.csv --no-trimming -ph low_
→˓temperature

Open the nuc- or prot_trimmed_phenotype_specific_changes.info file inside one of the homology group output
directories.

Besides the functionalities in this tutorial, PanTools has more useful functions that may aid you in retrieving more
specific information from the pangenome.

• Identify shared k-mers between genomes with kmer_classification.

• Find co-localized genes in a set of homology groups: locate_genes.

• Mapping short reads against the pangenome with map.

In part 5 of the tutorial we explore some of the phylogenetic methods implemented in PanTools.

100 Chapter 6. Contents



PanTools, Release 3.4.0

6.14 Part 5. Phylogeny

6.14.1 Part 5 preparation

Pantools v3 is required to follow this part of the tutorial. In addition, MAFFT, FastTree, IQ-tree, R (and the ape
R package) need to be installed and set to your $PATH. Validate if the tools are executable by using the following
commands.

pantools version
Rscript --help
mafft -h
iqtree -h
fasttree -h

If you did not follow part 4 of the tutorial, download the pre-constructed pangenome here.

$ wget http://bioinformatics.nl/pangenomics/tutorial/pecto_dickeya_DB.tar.gz
$ tar -xvzf pecto_dickeya_DB.tar.gz

6.14.2 Adding phenotype/metadata to the pangenome

Before we construct the trees, we will add some phenotype data to the pangenome. Once the we have a phylogeny, the
information can be included or be used to color parts of the tree. Below is a textfile with data for three phenotypes. The
third phenotype, low_temperature, is in this case a made up example! It states whether the strain is capable of growing
on (extreme) low temperatures. The phenotype file can be found inside the database directory, add the information to
the pangenome by using add_phenotype.

Genome, species, strain_name, low_temperature
1,P. odoriferum,P. odoriferum Q166, false
2,P. fontis, P. fontis M022, true
3,P. polaris,P. polaris S4.16.03.2B, false
4,P. brasiliense, P. brasiliense S2, true
5,P. brasiliense, P. brasiliense Y49, false
6,D. dadantii, D. dadantii 3937,?

$ pantools add_phenotype -dp pecto_dickeya_DB/ -ph pecto_dickeya_DB/phenotypes.txt

6.14.3 Constructing a phylogeny

In this tutorial we will construct three phylogenies, each based on a different type of variation: SNPs, genes and k-mers.
Take a look at the phylogeny manuals to get an understanding how the three methods work and how they differ from
each other.

1. phylogeny:core snp tree>

2. phylogeny:gene distance tree>

3. phylogeny:k-mer distance tree>

6.14. Part 5. Phylogeny 101

http://bioinformatics.nl/pangenomics/tutorial/pecto_dickeya_DB.tar.gz


PanTools, Release 3.4.0

6.14.4 Core SNP phylogeny

The core SNP phylogeny will run various Maximum Likelihood models on parsimony informative sites of single-copy
orthologous sequences. A site is parsimony-informative when there are at least two types of nucleotides that occur with
a minimum frequency of two. The informative sites are automatically identified by aligning the sequences; however, it
does not know which sequences are single-copy orthologous. You can identify these conserved sequences by running
gene_classification.

$ pantools gene_classification -dp pecto_dickeya_DB/ -ph species

Open gene_classification_overview.txt and take a look at statistics. As you can see there are 2134 single-copy ortholog
groups. Normally, all of these groups are aligned to identify SNPs but for this tutorial we’ll make a selection of only a
few groups to accelerate the steps. You can do this in two different ways:

Option 1: Open single_copy_orthologs.csv and remove all node identifiers after the first 20 homology groups and save
the file.

$ pantools core_snp_tree -dp pecto_dickeya_DB/ --mode ML -tn 4

Option 2: Open single_copy_orthologs.csv and select the first 20 homology_group node identifiers. Place them in a
new file sco_groups.txt and include this file to the function.

$ pantools core_snp_tree -dp pecto_dickeya_DB/ --mode ML -tn 4 -hm sco_groups.txt

The sequences of the homology groups are being aligned two consecutive times. After the initial alignment, input
sequences are trimmed based on the longest start and end gap of the alignment. The parsimony informative positions
are taken from the second alignment and concatenated into a sequence. When opening informative.fasta you can find
6 sequences, the length of the sequences being the number of parsimony-informative sites.

$ iqtree -nt 4 -s pecto_dickeya_DB/alignments/grouping_v1/core_snp_tree/informative.
→˓fasta -redo -bb 1000

IQ-tree generates several files, the tree that we later on in the tutorial will continue with is called informa-
tive.fasta.treefile. When examining the informative.fasta.iqtree file you can find the best fit model of the data. This
file also shows the number of sites that were used, as sites with gaps (which IQ-tree does not allow) were changed into
singleton or constant sites.

Gene distance tree

To create a phylogeny based on gene distances (absence/presence), we can simply execute the Rscript that was created
by gene_classification.

$ Rscript pecto_dickeya_DB/gene_classification/gene_distance_tree.R

The resulting tree is called gene_distance.tree.

102 Chapter 6. Contents



PanTools, Release 3.4.0

K-mer distance tree

To obtain a k-mer distance phylogeny, the k-mers must first be counted with the kmer_classification function. After-
wards, the tree can be constructed by executing the Rscript.

$ pantools kmer_classification -dp pecto_dickeya_DB/
$ Rscript pecto_dickeya_DB/kmer_classification/genome_kmer_distance_tree.R

The resulting tree is written to genome_kmer_distance.tree.

6.14.5 Renaming tree nodes

So far, we used three different types of distances (SNPs, genes, k-mers), and two different methods (ML, NJ) to create
three phylogenetic trees. First, lets take a look at the text files. The informative.fasta.treefile only contain genome num-
bers, bootstrap values and branch lengths but is lacking the metadata. Examining gene_distance.tree file also shows
this information but the species names as well, because we included this as a phenotype during gene_classification.

Let’s include the strain identifiers to the core snp tree to make the final figure more informative. Use the re-
name_phylogeny function to rename the tree nodes.

$ pantools rename_phylogeny -dp pecto_dickeya_DB --phenotype strain_name -if pecto_
→˓dickeya_DB/alignments/grouping_v1/core_snp_tree/informative.fasta.treefile

Take a look at informative.fasta_RENAMED.treefile, strain identifiers have been added to the tree.

6.14.6 Visualizing the tree in iTOL

Go to https://itol.embl.de and click on “Upload a tree” under the ANNOTATE box. On this page you can paste the
tree directly into the tree text: textbox or can click the button to upload the .newick file.

6.14. Part 5. Phylogeny 103

https://itol.embl.de


PanTools, Release 3.4.0

6.14.7 Basic controls ITOL

• The default way of visualizing a tree is the rectangular view. Depending on the number of genomes, the circular
view can be easier to interpret. You can the view by clicking on the “Display Mode” buttons.

• Increase the font size and branch width to improve readability

• When visualizing a Maximum likelihood (ML) tree, bootstrap values can be displayed by clicking the “Display”
button next to Bootstrap/metadata in the Advanced tab of the Control window. This enables you to visualize
the values as text or symbol on the branch. or by coloring the branch or adjusting the width.

• When you have a known outgroup or one of the genomes is a clear outlier in the tree, you should reroot the tree.
Hover over the name, click it so a pop-up menu appears. Click “tree structure” followed by “Reroot the tree
here”.

• Clicking on the name of a node in the tree allows you to color the name, branch, or background of that specific
node.

• When you’re happy the way your tree looks, go to the Export tab of the Control window. Select the desired output
format, click on the “Full image” button and export the file to a figure.

• Refresh the webpage to go back to the default view of your tree.

104 Chapter 6. Contents



PanTools, Release 3.4.0

6.14.8 Create iTOL templates

In iTOL it is possible to add colors to the tree by coloring the terminal nodes or adding an outer ring. The PanTools
function create_tree_template is able to create templates that allows for easy coloring (with maximum of 20 possible
colors). If the function is run without any additional argument, templates are created for trees that only contain genome
numbers (e.g. k-mer distance tree). Here we want to color the (renamed) core SNP tree with the ‘low_temperature’
phenotype. Therefore, the --phenotype strain_name must be included to the function.

$ pantools create_tree_template -dp pecto_dickeya_DB # Run this command when the tree␣
→˓contains genome numbers only
$ pantools create_tree_template -dp pecto_dickeya_DB -ph strain_name

Copy the two low_temperature.txt files from the label/strain_name/ and ring/strain_name/ directories to your personal
computer. Click and move the ring template file into the tree visualization webpage.

The resulting tree should look this when: the tree is rooted with the Dickeya genome, bootstrap values are displayed as
text and the ring color template was included.

Tree coloring is especially useful for large datasets. An example is shown in the figure below, where members of the
same species share a color.

PanTools has its documentation hosted on Read the Docs.

6.14. Part 5. Phylogeny 105



PanTools, Release 3.4.0

106 Chapter 6. Contents


	Licence
	Publications
	Functionalities
	Requirements
	Running the program
	Contents
	Installing and configuring the required software
	Download PanTools
	Set PanTools alias

	Install Neo4j
	Dependencies
	Install dependencies using Conda
	Manual installation of dependencies
	Install KMC
	Install MCL
	Install BUSCO
	Install FastTree
	Install R
	Install MAFFT
	Install IQ-tree
	Install fastANI or MASH
	Install BLAST
	Install InterProScan
	Phobius via InterProScan
	Install eggNOGmapper


	Installing pre-commit hooks

	Construct pangenome
	Build pangenome
	Required software
	Required arguments
	Optional arguments
	Example input file
	Example command
	Relevant literature

	Add annotations
	Required arguments
	Optional arguments
	Example command
	Output
	Example input file
	Select specific annotations for analysis

	Grouping proteins
	Group
	Required software
	Required arguments
	Optional arguments
	Optional arguments that influence the clustering sensitivity
	Example commands
	Output
	Relevant literature

	Optimal grouping
	Required software
	Required arguments
	Optional arguments
	Example commands
	Output

	Change grouping
	Required arguments
	Example command

	Build panproteome
	Required arguments
	Example input file
	Example command

	Add genomes
	Required software
	Required arguments
	Example input file
	Example command

	Add phenotypes
	Required arguments
	Optional argument
	Example input file
	Example command
	Output

	BUSCO
	Required software
	Required arguments
	Optional arguments
	Example commands
	Output

	Add functional annotations
	Add functions
	Functional databases
	Required arguments
	Optional arguments
	Example command
	Output
	Example input files
	Relevant literature
	Add antiSMASH gene clusters
	Required arguments
	Optional arguments
	Example input file
	Example command

	Removing data
	Remove nodes
	Required argument
	Optional arguments
	Example commands

	Remove phenotypes
	Required argument
	Optional arguments
	Example commands

	Remove annotations
	Required argument
	Example input file
	Example command

	Move or remove grouping
	Required argument
	Optional arguments for remove_grouping
	Example command



	Pangenome characterization
	Pangenome metrics
	Required argument
	Optional arguments
	Example commands
	Output

	Homology groups
	Gene classification
	Required arguments
	Optional arguments
	Example command
	Output

	Core unique thresholds
	Required arguments
	Optional arguments
	Example command
	Output

	Grouping overview
	Required arguments
	Optional arguments
	Example commands
	Output


	Pangenome structure
	Pangenome size genes
	Required argument
	Optional arguments
	Example commands
	Output
	Relevant literature

	Pangenome size k-mers
	Required argument
	Optional arguments
	Example command
	Output


	K-mer classification
	Required argument
	Optional arguments
	Example commands
	Output

	Functional annotations
	Functional classification
	Required arguments
	Optional commands
	Example command
	Output

	Functional annotation overview
	Required argument
	Optional commands
	Example command
	Output

	GO enrichment
	Required software
	Required arguments
	Optional arguments
	Example command
	Output



	Phylogeny
	Core phylogeny
	Required software
	Required arguments
	Optional arguments
	Example commands
	Output

	K-mer distance tree
	Output file

	Consensus tree
	Required software
	Required arguments
	Optional arguments
	Example commands
	Output
	Relevant literature

	Gene distance tree
	Output file

	ANI tree
	Required software
	Required argument
	Optional arguments
	Example command
	Output
	Find closest typestrain
	Relevant literature

	MLSA
	Step 1 Search for genes
	Required arguments
	Optional arguments
	Example command
	Output

	Step 2 Concatenate genes
	Required software
	Required arguments
	Optional arguments
	Example command
	Output

	Step 3 Run MLSA
	Required software
	Required argument
	Optional arguments
	Example commands
	Output


	Edit Phylogeny
	Rename phylogeny
	Required arguments
	Optional arguments
	Example command
	Output file

	Reroot phylogeny
	Required software
	Required arguments
	Example command
	Output file

	Create tree template
	Required argument
	Optional argument
	Example command
	Output



	Multiple Sequence Alignments
	Sequence alignments
	Alignment of homology groups
	Required software
	Required arguments
	Optional arguments
	Example regions file
	Example commands
	Output files



	Explore the pangenome
	Gene locations
	Required arguments
	Optional arguments
	Example command
	Output files

	Find genes
	Find genes by name
	Required arguments
	Optional arguments
	Example command
	Output files

	Find genes by annotation
	Required arguments
	Optional arguments
	Example command
	Output files

	Find genes in region
	Required arguments
	Optional arguments
	Example input file
	Example command
	Output files


	Functional annotations
	Show GO
	Required arguments
	Example commands
	Output file

	Compare GO
	Required arguments
	Example command
	Output file


	Homology group information
	Required arguments
	Optional arguments
	Example command
	Output files

	Sequence alignments
	Matrix files
	Order matrix
	Required argument
	Optional argument
	Example command
	Output file

	Rename matrix
	Required arguments
	Optional arguments
	Example command
	Output file


	Retrieve regions, genomes or features
	Retrieve regions
	Required arguments
	Example command
	Example input
	Output file

	Retrieve features
	Required arguments
	Optional arguments
	Example command
	Output files



	Read mapping
	Map
	Required arguments
	Optional arguments
	Optional arguments that influence the mapping sensitivity
	Example input files
	Example commands
	Output files


	Querying the pangenome
	Differences between pangenome and panproteome
	Available functions

	Part 1. Install PanTools
	Part 2. Build your own pangenome using PanTools
	BUILD, ANNOTATE and GROUP
	Adding additional genomes
	Homology grouping

	Adding phenotypes (requires PanTools v3)
	RETRIEVE functions

	Part 3. Explore the pangenome using the Neo4j browser
	Configuring Neo4j
	Exploring nodes and edges in Neo4j
	Query the pangenome database using CYPHER
	Cypher queries
	Homology group queries
	Structural variant detection


	Part 4. Characterization
	Part 4 preparation
	Input data
	Adding phenotype/metadata to the pangenome
	Metrics and general statistics
	Gene classification
	Pangenome structure
	Functional annotations
	GO enrichment
	Classifying functional annotations

	Sequence alignment

	Part 5. Phylogeny
	Part 5 preparation
	Adding phenotype/metadata to the pangenome
	Constructing a phylogeny
	Core SNP phylogeny
	Gene distance tree
	K-mer distance tree

	Renaming tree nodes
	Visualizing the tree in iTOL
	Basic controls ITOL
	Create iTOL templates



