

PanTools version 3.4.0

PanTools is a toolkit for comparative analysis of large number of
genomes. It is developed in the Bioinformatics Group of Wageningen
University, the Netherlands. Please cite the relevant publication(s)
from the list of publications if you use PanTools in your research.

Licence

PanTools has been licensed under GNU GENERAL PUBLIC LICENSE version 3.#1

Publications

	PanTools: representation, storage and exploration of pan-genomic
data.#2

	Efficient inference of homologs in large eukaryotic pan-proteomes#3

	Pan-genomic read mapping#4

	The Pectobacterium pangenome, with a focus on Pectobacterium
brasiliense, shows a robust core and extensive exchange of genes
from a shared gene pool#5

	Pantools v3: functional annotation, classification, and phylogenomics#6

Functionalities

PanTools currently provides these functionalities:

	Construction of a panproteome

	Adding new genomes to the pangenome

	Adding structural/functional annotations to the genomes

	Detecting homology groups based on similarity of proteins

	Optimization of homology grouping using BUSCO

	Read mapping

	Gene classification

	Phylogenetic methods

Requirements

	Java Virtual Machine version 1.8 or higher, Add path to the
java executable to your OS path environment variable.

	KMC: A disk-based k-mer counter, After downloading the
appropriate version (linux, macos or windows), add path to the kmc
and kmc_tools executables to your OS path environment variable.

	MCL: The Markov Clustering Algorithm, After downloading and
compiling the software, add path to the mcl executable to your OS
path environment variable.

For installing and configuring all required software, please see our
Installing and configuring the required software page.

Running the program

Add the path to the java archive of PanTools, located in the
pantools/target subdirectory, to the OS path environment variable.
Then run PanTools from the command line by:

$ java <JVM options> -jar pantools-3.4.0.jar <subcommand> <arguments>

Useful JVM options

- -server : To optimize JIT compilations for higher performance

- -Xmn(a number followed by m/g) : Minimum heap size in mega/giga
bytes

- -Xmx(a number followed by m/g) : Maximum heap size in mega/giga
bytes

Contents

	Installing and configuring the required software

	Construct pangenome

	Pangenome characterization

	Phylogeny

	Multiple Sequence Alignments

	Explore the pangenome

	Read mapping

	Querying the pangenome

	Differences between pangenome and panproteome

	Tutorial 1 - Install PanTools

	Tutorial 2 - Construct pangenome

	Tutorial 3 - Neo4j browser

	Tutorial 4 - Characterization

	Tutorial 5 - Phylogeny

PanTools has its documentation hosted on Read the Docs.

Footnotes

	#1

	https://www.gnu.org/licenses/gpl-3.0.en.html

	#2

	https://academic.oup.com/bioinformatics/article/32/17/i487/2450785

	#3

	https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2362-4

	#4

	https://www.biorxiv.org/content/10.1101/813634v1

	#5

	https://doi.org/10.1186/s12864-021-07583-5

	#6

	https://doi.org/10.1093/bioinformatics/btac506

Installing and configuring the required software

	Download PanTools

	Install Neo4j

	Install dependencies, either manually or through conda.

For PanTools developers:

	Installing pre-commit hooks

Download PanTools

The preferred option is to download the .jar file from
https://git.wur.nl/bioinformatics/pantools/-/releases and put it in a
directory named “pantools/target”.

Alternatively, follow the installation and compilation instructions from the
README.md file in the desired version (e.g.
https://git.wur.nl/bioinformatics/pantools/-/tree/v3.4.0).

Test if PanTools is executable:

$ java -jar /YOUR_FULL_PATH/pantools/target/pantools-3.4.0.jar

If the help page does not appear this (likely) means you don’t have a
properly working Java version 8. Java is included in the PanTools conda
environment, please consider to first install the environment. To
manually download Java, follow the instructions at
https://www.java.com/en/download.

Set PanTools alias

To avoid typing long command line arguments every time, we suggest setting an alias to your profile.
Set an alias in your ~/.bashrc using the following command. Always
include the full path to PanTools’ .jar file.

If Java is set to your $PATH.

$ echo "alias pantools='java -Xms20g -Xmx50g -jar /YOUR_FULL_PATH/pantools/target/pantools-3.4.0.jar'" >> ~/.bashrc

If Java is not set to your $PATH, include the full path in the
alias. Replace ‘YOUR_PATH’ 2x with the correct directory structure.

$ echo "alias pantools='/YOUR_PATH/jdk1.8.0_161/bin/java -Xms20g -Xmx50g -jar /YOUR_PATH/pantools/target/pantools-3.4.0.jar'" >> ~/.bashrc

Source your profile and test if the alias works.

$ source ~/.bashrc
pantools version

Install Neo4j

Although Neo4j is not needed for any of the PanTools functionalities, it
is required to be able to start up a database and use cypher queries. In
the PanTools versions up to 3.2 we use Neo4j 3.5.3 libraries, whereas
newer releases use Neo4j 3.5.30. Neo4j version 3.5.30 is compatible with
all earlier PanTools versions.

Download the Neo4j 3.5.30 community edition from the Neo4j
website#1 or download the binaries
directly from our
server#2.

$ wget http://www.bioinformatics.nl/pangenomics/tutorial/neo4j-community-3.5.30-unix.tar.gz
$ tar -xvzf neo4j-community-*

Edit your ~/.bashrc to include Neo4j to your $PATH
$ echo "export PATH=/YOUR_PATH/neo4j-community-3.5.30/bin:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ neo4j status # test if Neo4j is executable

Official Neo4j 3.5 manual: https://neo4j.com/docs/operations-manual/3.5/

Dependencies

Some of PanTools functionalities require additional software to be
installed. Installing every dependency will take a considerate amount of
time, therefore we highly recommend to use Mamba. Mamba efficiently
manages Conda environments allowing the installation of all required
tools into a separate environment. Instructions for creating the Mamba
environment or installing the tools manually are found in the sections
below.

Install dependencies using Conda

Instructions on how to install and use conda can be found in the
conda manual page. Once conda is installed, we suggest to
install Mamba into the Conda base environment to enable much faster
dependency solving.

To install every dependency, download pantools.yaml and include
it in the installation command.

$ wget http://www.bioinformatics.nl/pangenomics/manual/pantools.yaml
$ conda install mamba -n base -c conda-forge
$ mamba env create -n pantools --file pantools.yaml

$ conda activate pantools # activate the environment before using PanTools
$ conda deactivate # deactivate when you are done

Run the following commands when you do not want to install every
dependency, but only specific ones for the analysis that you’re
interested in.

$ conda create -n pantools python=3.6 kmc=3.0 mcl # Creates an environment that is able to construct the pangenome and cluster protein sequences
$ conda install -n pantools mafft iqtree fasttree blast mash fastani busco=5.2.2 r-ggplot2 r-ape graphviz # include tools you want to install via conda

Manual installation of dependencies

All tools must be set to your $PATH so PanTools is able to use them on
any location. The instructions below are based on a linux machine.

Install KMC

PanTools requires KMC v2.3 or 3.0 for k-mer counting during the
constructing of the pangenome graph. KMC v3.0 is fastest, but v2.3
should also be compatible with PanTools. The KMC3 binaries can be
downloaded from https://github.com/refresh-bio/KMC/releases.

$ tar -xvzf KMC* #uncompress the KMC binaries

Edit your ~/.bashrc to include KMC to your PATH
$ echo "export PATH=/YOUR_PATH/KMC/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ kmc # test if KMC is executable
$ kmc_tools # test if kmc_tools is executable

Install MCL

The MCL (Markov clustering) algorithm is required for the homology
grouping of PanTools. The software can be found on
https://micans.org/mcl under License & software.

$ wget https://micans.org/mcl/src/mcl-14-137.tar.gz
$ tar -xvzf mcl-*
$ cd mcl-14-137
$./configure --prefix=/YOUR_PATH/mcl-14-137/shared #replace YOUR_PATH with the correct path on your computer
$ make install

Edit your ~/.bashrc to include MCL to your PATH
$ echo "export PATH=/YOUR_PATH/mcl-14-137/bin/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ mcl -h # test if MCL is executable

Install BUSCO

BUSCO v3 to v5 can be run against the pangenome to estimate
annotation completeness. The versions require a different Python release
and need to be installed in a different way. We suggest to install BUSCO
v5, follow the instructions at https://gitlab.com/ezlab/busco/.

Install FastTree

FastTree is used to infer approximately-maximum-likelihood
phylogenetic trees from the alignments of nucleotide or protein
sequences which are extracted from the pangenome. An executable can be
found on the FastTree website: http://www.microbesonline.org/fasttree/.

$ wget http://www.microbesonline.org/fasttree/FastTree
$ chmod +x FastTree
$./FastTree # test if FastTree is executable

Edit your ~/.bashrc to include FastTree to your PATH
$ echo "export PATH=/YOUR_PATH:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct path on your computer
$ source ~/.bashrc

Install R

R and some additional R packages are required to execute R scripts
(files with .R extension) that create plots and construct
Neighbor-Joining phylogenies. In most cases, R is already installed on a
server. If this is not the case, install it through the instructions on
the website https://cran.r-project.org/, or compile it by using
following steps.

mkdir R
mkdir R/R_LIBS
cd R
wget https://cran.r-project.org/src/base/R-4/R-4.0.2.tar.gz #version number might have changed already
tar -xvf R-4.0.2.tar.gz
cd R-4.0.2/
./configure --prefix=/YOUR_PATH/R/ #replace YOUR_PATH with the correct path on your computer
make

Edit your ~/.bashrc to include R to your PATH
$ echo "export PATH=/YOUR_PATH/R/bin/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ R --help # test if R is executable

When R_LIB is set to your $PATH, R scripts know the location of the
libraries and are able to install additional R packages to the selected
directory.

$ echo "R_LIBS=/YOUR_PATH/R/R_LIBS/" >> ~/.bashrc
$ echo "export R_LIBS" >> ~/.bashrc
$ echo $R_LIBS # validate if the path to the R libraries can be found

Install MAFFT

MAFFT is required for all the alignment functionalities, such as the
alignment of homology groups and inferring the core SNP phylogeny. The
full manual is available at https://mafft.cbrc.jp/alignment/software/.

$ git clone https://github.com/GSLBiotech/mafft.git
$ cd mafft/core

Edit the first line of Makefile to change the desired install location, from 'PREFIX = /usr/local' to 'PREFIX = /YOUR_DESIRED_PATH/mafft/'
Make sure the 'ENABLE_MULTITHREAD = -Denablemultithread' line is uncommented, to enable multithreading

Edit your ~/.bashrc to include MAFFT to your $PATH
$ echo "export PATH=/YOUR_PATH/mafft/bin/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ mafft --help # test if MAFFT is executable

Install IQ-tree

Using IQ-tree we infer phylogenetic trees by maximum likelihood.
Information about the tool can found on their webpage
https://github.com/ebi-pf-team/interproscan/wiki/HowToDownload

wget https://github.com/Cibiv/IQ-TREE/releases/download/v1.6.12/iqtree-1.6.12-Linux.tar.gz
tar -xvf iqtree-1.6.12-Linux

Edit your ~/.bashrc to include IQ-tree to your $PATH
$ echo "export PATH=/YOUR_PATH/iqtree-1.6.12-Linux/bin/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ iqtree -h # test if IQ-tree is executable

Install fastANI or MASH

To be able to construct a Neighbor-Joining phylogeny using ANI-scores,
either fastANI or MASH is required. The manual for fastANI
is available at https://github.com/ParBLiSS/FastANI/. The manual for
MASH can be found at https://mash.readthedocs.io/en/latest/.

$ wget https://github.com/marbl/Mash/releases/download/v2.2/mash-Linux64-v2.2.tar
$ tar -xvf mash-Linux64-v2.2.tar
$ mv mash-Linux64-v2.2/mash .

$ wget https://github.com/ParBLiSS/FastANI/releases/download/v1.32/fastANI-Linux64-v1.32.zip #
$ unzip fastANI-Linux64-v1.32.zip

Edit your ~/.bashrc to include MASH and FastANI to your $PATH
$ echo "export PATH=/YOUR_PATH/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ mash -h # test if MASH is executable
$ fastANI -h # test if FastANI is executable

Install BLAST

BLAST is only required by one function, where the sequences are blasted
against a database to obtain their COG category. Information about BLAST
can be found at https://www.ncbi.nlm.nih.gov/books/NBK279690/?report=classic.

$ wget https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ncbi-blast-2.10.1+-x64-linux.tar.gz
$ tar -xvf ncbi-blast-2.10.1+-x64-linux.tar.gz

Edit your ~/.bashrc to include BLAST to your $PATH
$ echo "export PATH=/YOUR_PATH/ncbi-blast-2.10.1+/bin/:\$PATH" >> ~/.bashrc #replace YOUR_PATH with the correct path on your computer
$ source ~/.bashrc
$ blastp -help # test if BLAST is executable

Install InterProScan

Not required by any function, but the .GFF3 output of InterProScan
can be read to include functional annotations to the database. The
installation itself can be quite tricky as it uses many different
third-party binaries and each having their own dependencies. Please
check https://github.com/ebi-pf-team/interproscan/wiki/HowToDownload and
take a look at the install requirements as well. Installation of the
Panther models is not required.

Phobius via InterProScan

Phobius predictions can be performed during the InterProScan analysis
but it is not part of the standard set of predictions. To allow these
predictions, https://phobius.sbc.su.se/, place the entire directory in
the InterProScan/bin/ directory and edit the interproscan.properties
configuration file. More information about including Phobius into the
InterProScan analysis is found at
https://interproscan-docs.readthedocs.io/en/latest/ActivatingLicensedAnalyses.html.

Install eggNOGmapper

Not required by any function, but the .annotations output of
eggNOG-mapper can be read to include functional annotations to the
database. Information about this tool can be found on
http://eggnog-mapper.embl.de/

git clone https://github.com/eggnogdb/eggnog-mapper.git

Installing pre-commit hooks

First install the pre-commit#3 Python
package by following the installation
instructions#4.

Then, inside the root directory of the repository, run:

pre-commit install

This step you will need to run only once after cloning the repository.
The hooks will be installed in your local repository’s configuration
under .git/hooks/pre-commit.

After installation of the hooks they will be triggered at each commit if
any Java files have changed. Should any of the pre-commit hooks fail,
git will not allow you to create the commit. The output of the
pre-commit hooks should tell you what failed, allowing you to fix any
problems and to re-add the affected files for another commit attempt.

Pre-commit hooks can be run manually as well with:

pre-commit run

Footnotes

	#1

	https://neo4j.com/download-center/

	#2

	http://www.bioinformatics.nl/pangenomics/tutorial/neo4j-community-3.5.30-unix.tar.gz

	#3

	https://pre-commit.com/

	#4

	https://pre-commit.com/#install

Construct pangenome

Build pangenome

Build a pangenome out of a set of genomes.

Required software

KMC 2.3 or 3.0#1

Required arguments

--database-path/-dp Path to the pangenome database.

--genomes-file/-gf A text file containing paths to FASTA files
of genomes to be added to the pangenome; each on a separate line.

Optional arguments

--kmer-size/-ks Size of k-mers, allowed to be 6 <= K_SIZE <=
255. By not giving this argument, the most optimal k-mer size is
calculated automatically.

Example input file

/always/genome1.fasta
/use_the/genome2.fasta
/full_path/genome3.fasta

Example command

$ pantools build_pangenome -dp tomato_DB -gf tomato_3.txt

Relevant literature

	PanTools: representation, storage and exploration of pan-genomic data#2

Add annotations

Construct or expand the annotation layer of an existing pangenome. The
layer consists of genomic features like genes, mRNAs, proteins, tRNAs
etc. PanTools is only able to read General Feature Format (GFF)
files.

Multiple annotations can be assigned to a single genome; however, only
one annotation a time can be included in an analysis. The most recently
included annotation of a genome is included as default, unless a
different annotation is specified via --annotations-file, see the
explanation
below

Required arguments

--database-path/-dp Path to the pangenome database.

--annotations-file/-af A text file with on each line a genome
number and the full path to the corresponding annotation file,
separated by a space.

Optional arguments

--connect-annotations/-ca Connect the annotated genomic features
to nucleotide nodes in the DBG.

Example command

$ pantools add_annotations -dp tomato_DB -af annotations.txt

Output

The annotated features are incorporated in the graph. Output files are
written to the database directory.

	annotation_overview.txt, a summary of the GFF files incorporated
in the pangenome

	annotation.log, a list of misannotated feature identifiers.

Example input file

Each line of the file starts with the genome number followed by the full
path to the annotation file. The genome numbers match the line number of
the file that you used to construct the pangenome.

1 /always/genome1.gff
2 /use_the/genome2.gff
3 /full_path/genome3.gff

GFF3 file format

The GFF format consists of one line per feature, each containing 9
columns of data, plus optional track definition lines, that must be
tab separated. Please use the proper hierarchy for the feature:
gene -> mRNA -> CDS. Where gene is the parent of mRNA
and mRNA is the parent of the CDS feature. When a gene consists
of multiple CDS features but is missing mRNA, only the last CDS
feature is annotated in the pangenome. The following example from
Saccharomyces cerevisiae YJM320 (GCA_000975885) displays a correctly
formatted gene entry:

CP004621.1 Genbank gene 44836 45753 . - . ID=gene99;Name=RPL23A;end_range=45753,.;gbkey=Gene;gene=RPL23A;gene_biotype=protein_coding;locus_tag=H754_YJM320B00023;partial=true;start_range=.,44836
CP004621.1 Genbank mRNA 44836 45753 . - . ID=rna99;Parent=gene99;gbkey=mRNA;gene=RPL23A;product=Rpl23ap
CP004621.1 Genbank exon 45712 45753 . - . ID=id112;Parent=rna99;gbkey=mRNA;gene=RPL23A;product=Rpl23ap
CP004621.1 Genbank exon 44836 45207 . - . ID=id113;Parent=rna99;gbkey=mRNA;gene=RPL23A;product=Rpl23ap
CP004621.1 Genbank CDS 45712 45753 . - 0 ID=cds92;Parent=rna99;Dbxref=SGD:S000000183,NCBI_GP:AJQ01854.1;Name=AJQ01854.1;Note=corresponds to s288c YBL087C;gbkey=CDS;gene=RPL23A;product=Rpl23ap;protein_id=AJQ01854.1
CP004621.1 Genbank CDS 44836 45207 . - 0 ID=cds92;Parent=rna99;Dbxref=SGD:S000000183,NCBI_GP:AJQ01854.1;Name=AJQ01854.1;Note=corresponds to s288c YBL087C;gbkey=CDS;gene=RPL23A;product=Rpl23ap;protein_id=AJQ01854.1

Select specific annotations for analysis

Only one annotation per genome is considered by any PanTools
functionality. When multiple annotations are included, the last added
annotation of a genome is automatically selected unless an
--annotations-file is included specifying which annotations to use.
This annotation file contains only annotation identifiers, each on a
separate line. The most recent annotation is used for genomes where no
annotation number is specified in the file. Below is an example where
the third annotation of genome 1 is selected and the second annotation
of genome 2 and 3.

1_3
2_2
3_2

Grouping proteins

Group

Generate homology groups based on similarity of protein sequences. The
resulting homology groups connect similar sequences in the pangenome
database. Homology groups contain not only orthologous pairs, but also
pairs of homologs duplicated after the speciation of the two species,
so-called in-paralogs. The sizes of the groups are controlled by the
--relaxation parameter that can be set very strict or more lenient,
depending on the evolutionary distance of the genomes. When you are
unsure which relaxation setting is most suitable for your dataset,
running the optimal_grouping
functionality is recommended.

Be aware that not every sequence within a homology group has to be
similar to the other sequences. For example, two non-similar protein
sequences each have a high-similarity hit with the same protein sequence
but align to a different region, one at the start and one near the end
of the sequence.

When you want to run group another time but with different
parameters, the currently active grouping must first either be moved or
removed. This can be achieved with the
move- or remove_homology_groups
functions.

Method

Here, we explain a simplified version of the original algorithm,
please take a look at our publication for an extensive explanation.
First, potential similar sequences are identified by counting shared
k-mer (protein) sequences. Similarity between the selected protein
sequences is calculated through (local) Smith-Waterman alignments.
When the (normalized) similarity score of two sequences is above a
given threshold (controlled by --relaxation), the proteins are
connected with each other in the similarity graph. Every similarity
component is then passed to the MCL (Markov clustering) algorithm to
be possibly broken into several homology groups.

Required software

MCL#3

Required arguments

--database-path/-dp Path to the pangenome database.

Optional arguments

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

--threads/-tn The number of parallel working threads. Default
and minimum required threads is 3.

--longest-transcript Only cluster the longest protein-coding
transcript of genes.

--annotations-file/-af A text file with the identifiers of
annotations to be included, each on a separate line. The most recent
annotation is selected for genomes without an identifier.

Optional arguments that influence the clustering sensitivity

--relaxation/-rn The relaxation in homology calls. Should be
in range [1-8], from strict to relaxed (default 1). IMPORTANT!
This argument automatically sets the four remaining arguments, stated
here below.

--intersection-rate/-ir The fraction of k-mers that needs to
be shared by two intersecting proteins. Should be in range [0.001,
0.1] (default = 0.08).

--similarity-threshold/-st The minimum normalized similarity
score of two proteins. Should be in range [1-99] (default = 95).

--mcl-inflation/-mi The MCL inflation. Should be in range
[1-19] (default = 10.8).

--contrast/-cn The contrast factor. Should be in range [0-10]
(default = 8).

Example commands

$ pantools group -dp tomato_DB
$ pantools group -dp tomato_DB -tn 12 -rn 4

Output

	pantools_homology_groups.txt, overview of the created homology
groups. Each line represents one homology group, starting with the
homology group (database) identifier followed by a colon (:) and mRNA
identifiers (from GFF) that are separated by a space. To ensure all
identifiers are unique in this file, the mRNA ids are extended by a
hash symbol (#) and a genome number. The following line is example
output of an homology group with two genes from genome 1 and 146:

14001754: DLACAPHP_00001_mRNA#1 OPJEMMMF_03822_mRNA#146

Relevant literature

	Efficient inference of homologs in large eukaryotic pan-proteomes#4

Optimal grouping

Finding the most suitable settings for group
can be difficult and is always dependent on evolutionary distance of the
genomes in the pangenome. This functionality runs group on all eight
--relaxation settings, from strictest (d1) to the most relaxed (d8).
To find the optimal setting, complete and non-duplicated BUSCO genes
that are present in all genomes are used to validate each setting.

Method

A perfect clustering of the sequences would place each BUSCO in a
separate homology group with one representative protein per genome.
When BUSCO is run against the pangenome, the proteins corresponding to
the BUSCO HMMs have been identified. For each BUSCO, the
representative proteins are checked whether these are clustered into a
single or multiple groups. These groups are searched to identify
sequences other than the current BUSCO. The highest number of
correctly clustered BUSCOs present in one group are true positives
(tp). Any other gene clustered inside this group is considered a
false positive (fp) The remaining BUSCO genes outside this best
group are counted as false negative (fn). The summation of tps fps
and fns are defined as TP, FP and FN, respectively. From
these scores recall, precision and F-score measures are calculated as
follows:

\[\begin{align}\begin{aligned}Recall &= \frac{TP}{TP + FN}\\Precision &= \frac{TP}{TP + FP}\\F-score &= 2 \frac{Recall * Precision}{Recall + Precision}\end{aligned}\end{align} \]

[image: _images/true_false_positives.png]

Fig. 1 Proteins of three distinct homology groups are represented as
triangles, circles and squares. Green shapes are true positives (tp)
which have been assigned to the true group; red shapes are false
positives (fp) for the group they have been incorrectly assigned to, and
false negatives (fn) for their true group

Choosing the optimal setting

Choosing the correct setting is usually a trade-off between TPs and
FNs. The most strict grouping results in a significantly higher number
of clusters as the more relaxed settings. With stringent settings,
related proteins could get separated; however, a high number of false
positives is (usually) prevented (FN > FP). When you would go for a
more loose setting, the related proteins are likely to part of the
same group, but other sequences could be included as well (FN < FP).

No grouping is active after running this function. Use the generated
output files to identify a suitable grouping. Activate this grouping
using change_grouping. An overview of
the available groupings and used settings is stored in the ‘pangenome’
node (inside the database), or can be created by running
grouping_overview.

Required software

MCL#5

Required arguments

--database-path/-dp Path to the pangenome database.

--input-file/-if The output directory created by the
busco_protein function. This directory is
found inside the pangenome database, in the busco directory.

Optional arguments

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

--threads/tn Number of threads. The default and minimum
required threads is 3.

--value Only consider a selection of relaxation settings (1-8
allowed).

--fast Assume the optimal grouping is found when the F1-score
drops compared to the previous clustering round.

--longest-transcript Only cluster protein sequences of the largest
transcript per gene.

--annotations-file/-af A text file with the identifiers of
annotations to be included, each on a separate line. The most recent
annotation is selected for genomes without an identifier.

Example commands

$ pantools optimal_grouping -dp bacteria_DB -if bacteria_DB/busco/bacteria_odb9
$ pantools optimal_grouping -dp bacteria_DB -if bacteria_DB/busco/bacteria_odb9 -tn 12 --fast
$ pantools optimal_grouping -dp bacteria_DB -if bacteria_DB/busco/bacteria_odb9 -tn 12 --fast --longest-transcript
$ pantools optimal_grouping -dp bacteria_DB -if bacteria_DB/busco/bacteria_odb9 -tn 12 --value 1,2,3,4

$ Rscript optimal_grouping.R

Output

After each clustering round, homology groups are incorporated in the
graph. A text file with homology group and gene identifiers is stored in
the group directory in the pangenome database. This file is named
after the used sequence similarity threshold (25-95). Each line
represents one homology group, starting with the homology group
(database) identifier followed by a colon (:) and mRNA identifiers (from
GFF) that are separated by a space. The mRNA identifiers are extended by
a hash (#) and their genome number. The following line is example output
of an homology group with two genes from genome 1 and 146:

14001754: DLACAPHP_00001_mRNA#1 OPJEMMMF_03822_mRNA#146

Output files are written to optimal_grouping directory inside the
database.

	grouping_overview.csv, a summary of the benchmark statistics. Use
this file to find the most suitable grouping for your pangenome.

	optimal_grouping.R, Rscript to plot FN and FP values per
grouping.

	counts_per_busco.info, a log file of the scoring. Shows in which
homology groups the BUSCO genes were placed for the different
groupings.

[image: _images/best_grouping.png]

Fig. 2 :italic:`Example output of **optimal_grouping.R**. The number of FN and FP for all eight relaxation settings.`

Change grouping

Only a single homology grouping can be active in the pangenome. Use this
function to change the active grouping version. Information of the
available groupings and used settings is stored in the ‘pangenome’ node
(inside the database) and can be created by running
grouping_overview.

Required arguments

--database-path/-dp Path to the pangenome database.

--version The version of homology grouping to become active.

Example command

$ pantools change_grouping -dp tomato_DB --version 5

Build panproteome

Build a panproteome out of a set of proteins. By only including protein
sequences, the usable functionalities are limited to a protein-based
analysis, please see differences pangenome and panproteome. No additional proteins can be added to
the panproteome, it needs to be rebuilt completely.

Required arguments

--database-path/-dp Path to the pangenome database.

--proteomes-file/-pf A text file containing paths to FASTA
files of proteins to be added to the panproteome; each on a separate
line.

Example input file

/always/proteins1.fasta
/use_the/proteins2.fasta
/full_path/proteins3.faa

Example command

$ pantools build_panproteome -dp proteome_DB -pf proteins.txt

Add genomes

Include additional genomes to an already available pangenome.

Required software

KMC 2.3 or 3.0#6

Required arguments

--database-path/-dp Path to the pangenome database.

--genomes-file/-gf A text file containing paths to FASTA files
of genomes to be added to the pangenome; each on a separate line.

Example input file

/use_the/genome4.fasta
/full_path/genome5.fasta

Example command

$ pantools add_genomes -dp pangenome_DB -gf extra_genomes.txt

Add phenotypes

Including phenotype data to the pangenome which allows the
identification of phenotype specific genes, SNPs, functions, etc..
Altering the data is done by rerunning the command with an updated CSV
file.

Data types

Each phenotype node contains a genome number and can hold the
following data types: String, Integer, Float or
Boolean.

	Values recognized as round number are converted to an Integer and
to a Double when having one or multiple decimals.

	Boolean types are identified by checking if the value matches
‘true’ or ‘false’, ignoring capitalization of letters.

	String values remain completely unaltered except for spaces and
quotes characters. Spaces are changed into an underscore (’_’)
character and quotes are completely removed.

Bin numerical values

When using numerical values, two genomes are only considered to share
a phenotype if the value is identical. PanTools creates an
alternative version for these phenotypes by binning the values. Taking
‘Pathogenicity’ from the example below we see the integers between 3
and 15. Using these two extreme values three bins are created for a
new phenotype ‘Pathogenicity_binned’: 3-6.33, 6.34-11.66 and 11.67-15.
The number of bins is controlled through --value. For skewed data,
consider making the bins manually and include this as string
phenotype.

Required arguments

--database-path/-dp Path to the pangenome database.

--phenotype/-ph A CSV file containing the phenotype
information.

Optional argument

--append Do not remove existing phenotype nodes but only add new
properties to it. If a property already exists, values from the new
file will overwrite the old.

--value Number of bins used to group numerical values of a
phenotype.

Example input file

The input file needs to be in .CSV format, a plain text file where each
value is separated by a comma. The first row should start with
‘Genome,’ followed by the phenotype names and/or identifiers. The first
column must start with genome numbers corresponding to the one in
your pangenome. Phenotypes and metadata must be placed on the same line
as their genome number. A field can remain empty when the phenotype for
a genome is missing or unknown. Here below is an example of five genomes
contains six phenotypes:

Genome,Gram,Region,Pathogenicity,Boolean,float,species
1,+,NL,3,True,0.1,Species
2,+,BE,,False,0.1,Species3
3,+,LUX,7,true,0.1,Species3
4,+,NL,9,false,0.1,Species3
5,+,BE,15,TRUE,0.1,Species1

Example command

$ pantools add_phenotype -dp tomato_DB --phenotype pheno.csv
$ pantools add_phenotype -dp tomato_DB -ph pheno.csv --append

Output

Phenotype information is stored in ‘phenotype’ nodes in the graph. An
output file is written to the database directory.

	phenotype_overview.txt, a summary of the available phenotypes in
the pangenome

BUSCO

BUSCO attempts to provide a quantitative assessment of the completeness
in terms of expected gene content of a genome assembly. Proteins are
placed into categories of Complete and single-copy (S), Complete and
duplicated (D), fragmented (F), or missing (M). This
function is able to run BUSCO v3, v4 or v5 against protein
sequences of the pangenome.

The number of reported duplicated genes in eukaryotes is often to high
as different protein isoforms are counted multiple times. To adjust the
imprecise duplication score, include the --longest-transcripts
argument to the command.

You don’t have a benchmark set?

	When using BUSCO v3, go to https://busco.ezlab.org, download a odb9
set, and untar it with tar -xvzf. Include the entire directory in
the command using the --input-file argument.

	For BUSCO v4 and v5, you only have to provide the odb10 database name
with the --input-file argument, the database is downloaded
automatically. To get a full list of the available datasets, run
busco --list-datasets.

Required software

BUSCO must be set to your $PATH. For v3, test if the
which run_BUSCO.py command displays the full path so it can accessed
anywhere. For v4 and v5, test if busco is executable.

Required arguments

--database-path/-dp Path to the pangenome database.

--input-file/-if A BUSCO benchmark dataset.

Optional arguments

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

--name A string with questionable BUSCOs. Completeness (%) is
recalculated by excluding these genes.

--version The BUSCO version. Select either ‘busco3’, ‘busco4’ or
‘busco5’ (default).

--longest-transcript Only search against the longest
protein-coding transcript of genes.

--annotations-file/-af A text file with the identifiers of
annotations to be included, each on a separate line. The most recent
annotation is selected for genomes without an identifier.

Example commands

$ pantools busco_protein -dp bacteria_DB -if bacteria_odb10
$ pantools busco_protein -dp bacteria_DB -if busco_sets/bacteria_odb9/ --version busco3
$ pantools busco_protein -dp bacteria_DB -if busco_sets/bacteria_odb9/ --version busco3 --name POG093P01OY,POG093P0009,POG093P022K,POG093P027M,POG093P00Z2,POG093P013J
$ pantools busco_protein -dp bacteria_DB -if bacteria_odb10 --version busco4 --longest-transcript

Output

The BUSCO scores are stored inside BUSCO nodes of the pangenome
graph. Output files are written to the busco directory inside the
database.

	busco_scores.txt, overview of the BUSCO scores per genome.
Average and median statistics are calculated per category.

	busco_overview.csv, a table which combines the completeness
scores per genome together with the duplicated, fragmented and
missing BUSCO genes.

	hmm_overview.txt, a list of BUSCO genes showing the assigned
categories per genome.

Add functional annotations

PanTools is able to incorporate functional annotations into the
pangenome by reading output from various functional annotation tools.

Add functions

This function can integrate different functional annotations from a
variety of annotation files. Currently available functional annotations:
Gene Ontology, Pfam, InterPro, TIGRFAM, Phobius,
SignalP and COG. The first time this function is executed, the
Pfam, TIRGRAM, GO, and InterPro databases are integrated into the
pangenome. Phobius, SignalP and COG annotations do not have separate
nodes and are directly annotated on ‘mRNA’ nodes in the pangenome.

Gene names (or identifiers) from the input file are used to identify
gene nodes in the pangenome. Only genes with an exactly matching
name/identifier can be connected to functional annotation nodes! Use the
same FASTA and GFF3 files that were used to construct the pangenome
database.

Functional databases

Database versions in v3.4.0 repository

	

	Version

	Download date (dd-mm-yyyy)

	Gene ontology

	2021-12-15

	20-12-2021

	Pfam

	35.0

	20-12-2021

	TIGRFAM

	15.0

	01-10-2020

	InterPro

	87+

	Not included in repository

We regularly check and update the four functional database. To update
the functional database manually, download the following files and
replace the old ones in the /pantools/addons/ directory. The
TIGRFAM.info files are bundled in the TIGRFAMs_15.0_INFO.tar.gz file;
download the file to addons/tigrfam and uncompress the tarball first.
The first time running this function .INFO files are combined into a new
file COMBINATION_INFO_FILES and removed afterwards.

	File

	Database type

	Required directory

	Download link

	go.basic.obo

	GO

	addons

	http://purl.obolibrary.org/obo/go/go-basic.obo

	gene_ontology.txt

	Pfam

	addons

	ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases//Pfam35.0/database_files/gene_ontology.txt.gz

	Pfam-A.clans.tsv

	Pfam

	addons

	ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases//Pfam35.0/Pfam-A.clans.tsv.gz

	interpro.xml

	InterPro

	addons

	https://ftp.ebi.ac.uk/pub/databases/interpro/current_release/interpro.xml.gz

	TIGRFAMS_GO_LINK

	TIGRFAM

	addons/tigrfam

	https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGRFAMS_GO_LINK

	TIGRFAMS_ROLE_LINK

	TIGRFAM

	addons/tigrfam

	https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGRFAMS_ROLE_LINK

	TIGR_ROLE_NAMES

	TIGRFAM

	addons/tigrfam

	https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGR_ROLE_NAMES

	TIGR00001.INFO to TIGR04571.INFO

	TIGRFAM

	addons/tigrfam

	https://ftp.ncbi.nlm.nih.gov/hmm/TIGRFAMs/release_15.0/TIGRFAMs_15.0_INFO.tar.gz

Required arguments

--database-path/-dp Path to the pangenome database.

--input-file/-if A text file with on each line a genome number
and the full path to the corresponding annotation file, separated by a
space.

Optional arguments

--annotations-file/-af A text file with the identifiers of
annotations to be included, each on a separate line. The most recent
annotation is selected for genomes without an identifier.

Example command

$ pantools add_functions -dp tomato_DB -if f_annotations.txt
$ pantools add_functions -dp tomato_DB -if f_annotations.txt -af annotations.txt

Output

Functional annotations are incorporated in the graph. A log file is
written to the log directory.

	add_functional_annotations.log, a log file with the the number of
added functions per type and the identifiers of functions that could
not be included.

Example input files

The --input-file requires to be formatted like an annotation input
file. Each line of the file starts with the genome number followed by
the full path to an annotation file.

	File type

	Recognized by pattern in file name

	InterProScan

	interpro & .gff

	eggNOG-mapper

	eggnog

	Phobius

	phobius

	SignalP

	signalp

	Custom file

	custom

1 /mnt/scratch/interpro_results_genome_1.gff
1 /mnt/scratch/custom_annotation_1.txt
1 /mnt/scratch/phobius_1.txt
2 /mnt/scratch/signalp.txt
2 /mnt/scratch/eggnog_genome_2.annotations
2 /mnt/scratch/transmembrane_annotations.txt phobius
3 /mnt/scratch/ipro_results_genome_3.annot custom

Annotation file types

PanTools can recognize functional annotations in different output
formats.

Phobius and SignalP are not standard analyses of the InterProScan
pipeline and require some additional steps during the InterProScan
installation. Please take a look at
our InterProScan install instruction
to verify if the tools are part of the prediction pipeline. Phobius 1.01

	Function type

	Allowed annotation file

	GO

	InterProscan .gff & custom annotation file

	Pfam

	InterProscan .gff & custom annotation file

	InterPro

	InterProscan .gff & custom annotation file

	TIGRFAM

	InterProscan .gff & custom annotation file

	Phobius

	InterProscan .gff & Phobius 1.01 output

	SignalP

	InterProscan .gff, signalP 4.1 output, signalP 5.0 output

	COG

	eggNOG-mapper

InterProScan gff file:

##gff-version 3
##interproscan-version 5.52-86.0
AT4G21230.1 ProSiteProfiles protein_match 333 620 39.000664 + . date=06-10-2021;Target=mRNA.AT4G21230.1 333 620;Ontology_term="GO:0004672","GO:0005524","GO:0006468";ID=match$42_333_620;signature_desc=Protein kinase domain profile.;Name=PS50011;status=T;Dbxref="InterPro:IPR000719"
AT3G08980.5 TIGRFAM protein_match 25 101 3.7E-14 + . date=06-10-2021;Target=mRNA.AT3G08980.5 25 101;Ontology_term="GO:0006508","GO:0008236","GO:0016020";ID=match$66_25_101;signature_desc=sigpep_I_bact: signal peptidase I;Name=TIGR02227;status=T;Dbxref="InterPro:IPR000223"
AT2G17780.2 Phobius protein_match 338 354 . + . date=06-10-2021;Target=AT2G17780.2 338 354;ID=match$141_338_354;signature_desc=Region of a membrane-bound protein predicted to be embedded in the membrane.;Name=TRANSMEMBRANE;status=T
AT2G17780.2 Phobius protein_match 1 337 . + . date=06-10-2021;Target=AT2G17780.2 1 337;ID=match$142_1_337;signature_desc=Region of a membrane-bound protein predicted to be outside the membrane, in the extracellular region.;Name=NON_CYTOPLASMIC_DOMAIN;status=T
AT3G11780.2 SignalP_EUK protein_match 1 24 . + . date=06-10-2021;Target=mRNA.AT3G11780.2 1 24;ID=match$230_1_24;Name=SignalP-noTM;status=T
AT1G04300.2 CDD protein_match 40 114 1.54717E-13 + . date=06-10-2021;Target=mRNA.AT1G04300.2 40 114;Ontology_term="GO:0005515";ID=match$212_40_114;signature_desc=MATH;Name=cd00121;status=T;Dbxref="InterPro:IPR002083"

eggNOG-mapper (tab separated) file:

#query_name seed_eggNOG_ortholog seed_ortholog_evalue seed_ortholog_score best_tax_level Preferred_name GOs EC KEGG_ko KEGG_Pathway KEGG_Module KEGG_Reaction KEGG_rclass BRITE KEGG_TC CAZy BiGG_Reaction taxonomic scope eggNOG OGs best eggNOG OG COG Functional cat. eggNOG free text desc.
ATKYO-2G54530.1 3702.AT2G35130.2 1.9e-179 636.0 Brassicales GO:0003674,GO:0003676,GO:0003723,GO:0003824,GO:0004518,GO:0004519,GO:0005488,GO:0005575,GO:0005622,GO:0005623,GO:0006139,GO:0006725,GO:0006807,GO:0008150,GO:0008152,GO:0009451,GO:0009987,GO:0016070,GO:0016787,GO:0016788,GO:0034641,GO:0043170,GO:0043226,GO:0043227,GO:0043229,GO:0043231,GO:0043412,GO:0044237,GO:0044238,GO:0044424,GO:0044464,GO:0046483,GO:0071704,GO:0090304,GO:0090305,GO:0097159,GO:1901360,GO:1901363 Viridiplantae 37R67@33090,3GAUT@35493,3HNDD@3699,KOG4197@1,KOG4197@2759 NA|NA|NA E Pentacotripeptide-repeat region of PRORP
ATKYO-UG22500.1 3712.Bo02269s010.1 7.5e-35 153.7 Brassicales Viridiplantae 29I9W@1,2RRH4@2759,383W6@33090,3GWQZ@35493,3I1A9@3699 NA|NA|NA
ATKYO-1G60060.1 3702.AT1G48090.1 0.0 6241.0 Brassicales ko:K19525 ko00000 Viridiplantae 37IJB@33090,3GAN0@35493,3HQ90@3699,COG5043@1,KOG1809@2759 NA|NA|NA U Vacuolar protein sorting-associated protein
ATKYO-3G74720.1 3702.AT3G52120.1 7.2e-245 852.8 Brassicales ko:K13096 ko00000,ko03041 Viridiplantae 37QYY@33090,3G9VU@35493,3HRDK@3699,KOG0965@1,KOG0965@2759 NA|NA|NA L SWAP (Suppressor-of-White-APricot) surp domain-containing protein D111 G-patch domain-containing protein
ATKYO-4G41660.1 3702.AT4G16340.1 0.0 3392.1 Brassicales GO:0003674,GO:0005085,GO:0005088,GO:0005089,GO:0005488,GO:0005515,GO:0005575,GO:0005622,GO:0005623,GO:0005634,GO:0005737,GO:0005783,GO:0005829,GO:0005886,GO:0006810,GO:0008064,GO:0008150,GO:0008360,GO:0009605,GO:0009606,GO:0009628,GO:0009629,GO:0009630,GO:0009958,GO:0009966,GO:0009987,GO:0010646,GO:0010928,GO:0012505,GO:0016020,GO:0016043,GO:0016192,GO:0017016,GO:0017048,GO:0019898,GO:0019899,GO:0022603,GO:0022604,GO:0023051,GO:0030832,GO:0031267,GO:0032535,GO:0032956,GO:0032970,GO:0033043,GO:0043226,GO:0043227,GO:0043229,GO:0043231,GO:0044422,GO:0044424,GO:0044425,GO:0044432,GO:0044444,GO:0044446,GO:0044464,GO:0048583,GO:0050789,GO:0050793,GO:0050794,GO:0050896,GO:0051020,GO:0051128,GO:0051179,GO:0051234,GO:0051493,GO:0065007,GO:0065008,GO:0065009,GO:0070971,GO:0071840,GO:0071944,GO:0090066,GO:0098772,GO:0110053,GO:1902903 ko:K21852 ko00000,ko04131 Viridiplantae 37QIM@33090,3G8RK@35493,3HSFN@3699,KOG1997@1,KOG1997@2759 NA|NA|NA T Belongs to the DOCK family

A custom input file must consist of two tab or comma separated columns.
The first column should contain a gene/mRNA id, the second an identifier
from one of four functional annotation databases: GO, Pfam, InterPro or
TIGRFAM.

AT5G23090.4,GO:0046982
AT5G23090.4,IPR009072
AT1G27540.2,PF03478
AT2G18450.1,TIGR01816

Phobius 1.01 ‘short’ (tab separated) input file:

SEQENCE ID TM SP PREDICTION
mRNA-YPR204W 0 0 o
mRNA-ndhB-2_1 6 Y n5-16c21/22o37-57i64-83o89-113i134-156o168-189i223-246o

Phobius 1.01 ‘long’ (tab separated) input file:

ID mRNA-YPR204W
FT DOMAIN 1 1032 NON CYTOPLASMIC.
//
ID mRNA-ndhB-2_1
FT SIGNAL 1 21
FT DOMAIN 1 4 N-REGION.
FT DOMAIN 5 16 H-REGION.
FT DOMAIN 17 21 C-REGION.
FT DOMAIN 22 36 NON CYTOPLASMIC.
FT TRANSMEM 37 57
FT DOMAIN 58 63 CYTOPLASMIC.
FT TRANSMEM 64 83
FT DOMAIN 84 88 NON CYTOPLASMIC.
FT TRANSMEM 89 113
FT DOMAIN 114 133 CYTOPLASMIC.
FT TRANSMEM 134 156
FT DOMAIN 157 167 NON CYTOPLASMIC.
FT TRANSMEM 168 189
FT DOMAIN 190 222 CYTOPLASMIC.
FT TRANSMEM 223 246
FT DOMAIN 247 253 NON CYTOPLASMIC.
//

SignalP 4.1 ‘short’ (tab separated) input file:

name Cmax pos Ymax pos Smax pos Smean D ? Dmaxcut Networks-used
mRNA-rpl2-3 0.148 20 0.136 20 0.146 3 0.126 0.131 N 0.450 SignalP-noTM
mRNA-cox2 0.107 25 0.132 12 0.270 4 0.162 0.148 N 0.450 SignalP-noTM
mRNA-cox2_1 0.850 17 0.776 17 0.785 2 0.717 0.753 Y 0.500 SignalP-TM

SignalP 5.0 ‘short’ (tab separated) input file:

SignalP-5.0 Organism: Eukarya Timestamp: 20211122233246
ID Prediction SP(Sec/SPI) OTHER CS Position
AT3G26880.1 SP(Sec/SPI) 0.998803 0.001197 CS pos: 21-22. VYG-KK. Pr: 0.9807
mRNA-rpl2-3 OTHER 0.001227 0.998773

Relevant literature

	Expansion of the Gene Ontology knowledgebase and resources#7

	InterPro in 2019: improving coverage, classification and access to
protein sequence annotations#8

	TIGRFAMs and Genome Properties in 2013#9

	A Combined Transmembrane Topology and Signal Peptide Prediction
Method#10

	Expanded microbial genome coverage and improved protein family
annotation in the COG database#11

Add antiSMASH gene clusters

Read antiSMASH output and incorporate Biosynthetic Gene Clusters
(BGC) nodes into the pangenome database. A ‘bgc’ node holds the gene
cluster product, the cluster address and has a relationship to all gene
nodes of the cluster. For this function to work, antiSMASH should be
performed with the same FASTA and GFF3 files used for building the
pangenome. antiSMASH output will not match the identifiers of the
pangenome when no GFF file was included.

As of PanTools v3.3.4 the required antiSMASH version is 6.0.0. Gene
cluster information is parsed from the .JSON file that is generated in
each run. We try to keep the parser updated with newer versions but
please contact us when this is no longer the case.

	

	Version

	Version date

	antiSMASH

	6.0.0

	21-02-2021

Required arguments

--database-path/-dp Path to the pangenome database.

--input-file/-if A text file with on each line a genome number
and the full path to the corresponding antiSMASH output file,
separated by a space.

Optional arguments

--annotations-file/-af A text file with the identifiers of
annotations to be included, each on a separate line. The most recent
annotation is selected for genomes without an identifier.

Example input file

The --input-file requires to be formatted like a regular annotation
input file. Each line of the file starts with the genome number followed
by the full path to the JSON file.

1 /mnt/scratch/IPO3844/antismash/IPO3844.json
4 /home/user/IPO3845/antismash/IPO3845.json

Example command

$ pantools add_antismash -dp tomato_DB -if clusters.txt

Removing data

The following functionalities allow the removal of large sets of nodes
and relationships from the pangenome. These functions will first ask for
a confirmation before the nodes are actually removed. Be careful, the
data is not backed up and removing nodes or properties means it is
permanently gone.

Remove nodes

Remove a selection of nodes and their relationships from the pangenome.
For a pangenome database the following nodes cannot be removed:
nucleotide, pangenome, genome, sequence. When using a
panproteome, mRNA nodes cannot be removed.

Required argument

--database-path/-dp Path to the pangenome database.

Requires either one of the following arguments

--node one or multiple node identifiers, separated by a comma.

--label a node label, all nodes matching the label are removed.

Optional arguments

Both optional arguments can only be used in combination with
--label.

--skip/-sk Do not remove nodes of the selected genomes.

--reference/-ref Only remove nodes of the selected genomes.

Example commands

$ pantools remove_nodes -dp tomato_DB --node 10348734,10348735,10348736
$ pantools remove_nodes -dp tomato_DB --label pfam
$ pantools remove_nodes -dp tomato_DB --label interpro --reference 2-6

Remove phenotypes

Delete phenotype nodes or remove specific phenotype information from
the nodes. The specific phenotype property needs to be specified with
--phenotype. When this argument is not included, phenotype nodes
are removed.

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--phenotype/-ph name of the phenotype. All information of the
given phenotype is removed from ‘phenotype’ nodes.

--skip/-sk Do not remove nodes of the selected genomes.

--reference/-ref Only remove nodes of the selected genomes.

Example commands

$ pantools remove_phenotype -dp tomato_DB
$ pantools remove_phenotype -dp tomato_DB --phenotype color
$ pantools remove_phenotype -dp tomato_DB --phenotype color --skip 11,12

Remove annotations

Remove all the genomic features that belong to annotations, such as
gene, mRNA, exon, tRNA, and feature nodes. Functional
annotation nodes are not removed with this function but can be removed
with remove_nodes. Removing annotations
can be done in two ways:

	Selecting genomes with --reference or --skip, for which all
annotation features will be removed.

	Remove specific annotations by providing a text file with identifiers
via the --annotations-file argument.

Required argument

--database-path/-dp Path to the pangenome database.

Requires either one of the following arguments

--skip/-sk a selection of genomes excluded from the removal of
annotations.

--reference/-ref a selection of genomes for which all
annotations will be removed.

--annotations-file/-af A text file with the identifiers of
annotations to be removed, each on a separate line.

Example input file

The input file should be a single line with annotation identifiers
separated by a comma. The following example will remove the first
annotations of genome 1, 2 and 3 and the second annotation of genome 1.

1_1
1_2
2_1
3_1

Example command

$ pantools remove_annotations --skip 3,4,5
$ pantools remove_annotations -af annotations.txt

Move or remove grouping

As only one grouping can be active at the time, the currently active
grouping needs to be removed or inactivated before
group can be run again.

	remove_grouping deletes all ‘homology_group’ nodes and
‘is_similar’ relations between ‘mRNA’ nodes from the database.

	move_grouping relabels ‘homology_group’ nodes to
‘inactive_homology_group’. The moved grouping can be activated again
with change_grouping.

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments for remove_grouping

--version Select a specific grouping version to be removed. Two
additional options: ‘all’ to remove all groupings and ‘all_inactive’ to
remove all inactive groupings.

--fast Do not remove the ‘is_similar’ relationships between mRNA
nodes. This does not influence the next grouping.

Example command

$ pantools move_grouping -dp tomato_DB

$ pantools remove_grouping -dp tomato_DB
$ pantools remove_grouping -dp tomato_DB --version 1
$ pantools remove_grouping -dp tomato_DB --version all --fast
$ pantools remove_grouping -dp tomato_DB --version all_inactive

Footnotes

	#1

	http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=kmc&subpage=about

	#2

	https://academic.oup.com/bioinformatics/article/32/17/i487/2450785

	#3

	https://micans.org/mcl/

	#4

	https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2362-4

	#5

	https://micans.org/mcl/

	#6

	http://sun.aei.polsl.pl/REFRESH/index.php?page=projects&project=kmc&subpage=about

	#7

	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5210579/

	#8

	https://academic.oup.com/nar/article/47/D1/D351/5162469

	#9

	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531188/

	#10

	https://www.sciencedirect.com/science/article/abs/pii/S0022283604002943?via%3Dihub

	#11

	https://academic.oup.com/nar/article/43/D1/D261/2439462

Pangenome characterization

Functionalities for characterization a pangenome based on genes, k-mer
sequences and functions. In this manual we use several pangenome related
terms with the following definitions:

	Core, an element is present in all genomes

	Unique, an element is present in a single genome

	Accessory, an element is present in some but not all genomes

When phenotype information is used in the analysis, three additional
categories can be assigned:

	Shared, an element present in all genomes of a phenotype

	Exclusive, an element is only present in a certain phenotype

	Specific, an element present in all genomes of a phenotype and is
also exclusive

[image: _images/classify_table.png]

Fig. 3 The possible classification categories for genes, k mers and functions.
Additional copies of an element are assigned to the same category.

Pangenome metrics

Generates relevant metrics of the pangenome and the individual genomes
and sequences.

	On the pangenome level: the number of genomes, sequences,
annotations, genes, proteins, homology groups, k-mers, and database
nodes and edges.

	On the genome and sequence level: assembly statistics and metrics
about functional elements. The assembly statistics consists of genome
size, N25-N95, L25-L95, BUSCO scores and GC content. An overview of
the functional elements is created by summarizing the functional
annotations per genome (and sequence) and reporting the shortest,
longest, average length and density per MB for genome features such
as genes, exons and CDS.

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--skip/-sk Exclude a selection of genomes

--reference/-ref Only include a selection of genomes.

--annotations-file/-af A text file with the identifiers of
annotations that should be used. The most recent annotation is
selected for genomes without an identifier.

Example commands

$ pantools metrics -dp tomato_DB
$ pantools metrics -dp tomato_DB --skip 1,2,5

Output

Output files are written to the metrics directory in the database.
Note: the percentage a genome or sequence is covered by a genes, repeats
etc., (currently) does not consider overlap between features!

	metrics.txt, overview of the metrics calculated on the pangenome
and genome level.

	metrics_per_genome.csv, summary of the metrics that are
calculated on a genome level. The output is formatted as table.

	metrics_per_sequence.csv, summary of metrics that are calculated
on a sequence (contig/scaffold) level. The output is formatted as
table. This file is not created when using a panproteome.

Homology groups

The following functions require the protein sequences to be clustered by
group.

Gene classification

Classification of the pangenome’s gene repertoire. Homology groups are
utilized to identify shared genes between genomes. The default criteria
for defining the category of a gene is shown in Fig. 3.

To identify soft core and cloud genes, the core and unique thresholds (%)
can be relaxed by --core-threshold and --unique-threshold,
respectively. The --phenotype-threshold argument can be used to
lower the threshold for phenotype specific and shared homology groups.

Required arguments

--database-path/-dp Path to the pangenome database.

Optional arguments

--phenotype/-ph A phenotype name, used to find genes specific
to the phenotype.

--skip/-sk Exclude a selection of genomes. This automatically
lowers the threshold for core genes.

--reference/-ref Only include a selection of genomes. This
automatically lowers the threshold for core genes.

--core-threshold/-ct Threshold (%) for (soft) core genes.
Default is 100% of genomes.

--unique-threshold/-ut Threshold (%) for unique/cloud genes.
Default is a single genome, not a percentage.

--phenotype-threshold/-pt Threshold (%) for phenotype
specific/shared genes. Default is 100% of genomes with phenotype.

--mode MLSA Finds suitable single-copy groups for a
MLSA.

Example command

$ pantools gene_classification -dp tomato_DB
$ pantools gene_classification -dp tomato_DB --unique-threshold 5 --core-threshold 95
$ pantools gene_classification -dp tomato_DB --phenotype resistance --skip 2,3 --phenotype-threshold 95

Output

Output files are written to the gene_classification directory in the
database.

	gene_classification_overview.txt, statistics of the core,
accessory, unique groups of the pangenome and individual genomes.

	classified_groups.csv, the classified homology groups formatted
as the table in the example table above.

	cnv_core_accessory.txt, core and accessory groups with genomes
that have additional copies compared to the lowest number (at least
1) in the group.

	group_size_occurrence.txt, number of times a group of a certain
size occurs in the pangenome. The homology group sizes can be based
on the number of proteins or the number of genomes.

	gene_distance_tree.R, an R script to cluster genomes based on gene
distance (absence/presence). For more information, see the
Gene distance tree manual.

	shared_unshared_gene_count.csv, six tables with the number of
shared and unshared genes between genomes: all genes, distinct genes
and informative distinct genes. To get the number of distinct genes,
additional copies of a gene within a homology group are ignored.
Genes are considered informative when shared by at least two genomes.

Additional files are generated when the --phenotype argument is
included.

	gene_classification_phenotype_overview.txt, the number of
identified phenotype shared and specific groups.

	phenotype_disrupted.txt, this file shows which proteins prevented
phenotype shared groups to be specific.

	phenotype_cnv, homology groups where all members of a phenotype
have at least one additional copy of a gene compared to one of the
other phenotypes.

	phenotype_association.csv, results of performed Fisher exact
tests on homology groups with an unequal proportion of phenotype
members.

The following files contain homology group node identifiers.

	all_homology_groups.csv, the node identifiers of all homology
groups.

	core_groups.csv, the node identifiers of the core homology
groups.

	single_copy_orthologs.csv, the node identifiers of single-copy
ortholog groups. This is a subset of the core set where each genome
is only allowed to have a one copy of a gene.

	accessory_groups.csv, the node identifiers of accessory homology
groups. The groups are ordered (in descending order) by the group size based
on the total number of genomes present.

	accessory_combinations.csv, the node identifiers of accessory
homology groups, ordered by the combination of genomes by which they
are shared.

	unique_groups.csv, the node identifiers of unique homology groups
ordered by genome.

	phenotype_specific_groups.csv, the node identifiers of phenotype
specific homology groups.

	phenotype_shared_groups.csv, the node identifiers of phenotype
shared homology groups.

	phenotype_exclusive_groups.csv, the node identifiers of phenotype
exclusive homology groups.

When --mode MLSA is included

	mlsa_suggestions.txt, a list of single copy ortholog genes all
having the same gene name. This file cannot be created when using a
panproteome.

Core unique thresholds

Runs a simplified version of the gene_classification function to
test the effect of different --core-threshold and
--unique-threshold cut-offs between 1 and 100%.

Required arguments

--database-path/-dp Path to the pangenome database.

Optional arguments

--skip/-sk Exclude a selection of genomes. This automatically
lowers the threshold for core genes.

--reference/-ref Only include a selection of genomes. This
automatically lowers the threshold for core genes.

Example command

$ pantools core_unique_thresholds -dp tomato_DB
$ pantools core_unique_thresholds -dp tomato_DB --skip 1,2,5-10
$ R script tomato_DB/R_scripts/core_unique_thresholds/core_unique_thresholds.R

Output

Output files are written to core_unique_thresholds directory in the
database.

	core_unique_thresholds.csv, the number of (soft) core
unique/cloud homology groups for all tested thresholds.

	core_unique_thresholds.R, the R script plots the number of
(soft) core unique/cloud homology groups for all tested thresholds.

[image: _images/core_unique_thresholds.png]

Fig. 4 Example output of core_unique_thresholds.R on a pangenome of
197 Pectobacterium genomes demonstrates the effect of loosening the
thresholds. The number of (soft) core (orange) homology groups
slightly increases when the cut-off for this category is lowered from
100% (200 genomes) to 1% (2) in steps of 1%. Unique/cloud (blue) start
at 0.00 which represents a single genome. Using a 0.01 cut-off, groups
are unique/cloud having 2 genomes or less. The threshold is further
increased to 100% (200) in steps of 1%.

Grouping overview

Reports the content of all (active & inactive) homology groups for the
different groupings in the pangenome. Include --mode fast into the
command to get a quick overview of the available groupings and the
settings that were used.

Required arguments

--database-path/-dp Path to the pangenome database.

Optional arguments

--mode fast Only show which grouping is active and which groupings
can be activated.

Example commands

$ pantools grouping_overview -dp tomato_DB
$ pantools grouping_overview -dp tomato_DB --mode fast

Output

Output files are written to /database_directory/group/

	grouping_overview.txt, all homology groups in the pangenome. For
each homology group, the total number of members and the number of
members per per genome is reported.

	current_pantools_homology_groups.txt, overview of the active
homology groups. Each line represents one homology group. The line
starts with the homology group (database) identifier followed by a
colon and the rest are mRNA IDs (from gff/genbank) seperated by a
space.

Pangenome structure

Iterations of random genome combinations according to the models
proposed by Tettelin et al.* in 2005 are used to determine the
contribution of new accessions with respect to the increase in core,
accessory, and unique. Each iteration starts with three random genomes
from which core, accessory and unique homology groups are identified.
Subsequently, random genomes are added and group reclassified until the
maximum number of genomes is reached. To simulate the overall
pangenome-size increase and core-genome decrease, we suggest to use at
least 10,000 iterations. Additional copies of a gene are ignored in the
simulation.

Heaps’ law (a power law) can be fitted to the number of new genes
observed when increasing the pangenome by one random genome. The formula
for the power law model is \(n = k * N^{-a}\), where n is the
newly discovered genes, N is the total number of genomes, and k and
a are the fitting parameters. A pangenome can be considered open when
a < 1 and closed if a > 1.

Pangenome size genes

Pangenome size estimation based on homology groups. This function
requires the sequences to be already clustered by
group.

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--threads/-tn (default value: 1) : The number of parallel
working threads.

--skip/-sk Exclude a selection of genomes

--reference/-ref Only include a selection of genomes.

--value Number of loops (default is 10.000).

Example commands

$ pantools pangenome_structure_genes -dp tomato_DB
$ pantools pangenome_structure_genes -dp tomato_DB --value 1000 --skip 1-3,5

$ R script pangenome_growth.R
$ R script gains_losses_median_or_average.R
$ R script gains_losses_median_and_average.R
$ R script heaps_law.R

Output

Output files are written to /database_directory/pangenome_size/gene/

	pangenome_size.txt, various statistics on the number core,
accessory, and unique homology groups for the different pangenome
sizes.

	gains_losses.txt, the average group gain and loss between
different pangenome sizes. First the average number (core, accessory,
and unique) groups for each pangenome size is calculated. The average
gain and loss of groups is then found by subtracting the averages of
a certain size to the averages of one genome larger (e.g. pangenome
size of 5 is compared to 6).

	gains_losses_last_genome.txt, the number of (core, accessory, and
unique) groups that are gained or lost when including one of the
genomes to a pangenome of the remaining genomes.

	pangenome_growth.R, an R script to plot the number of core,
accessory and unique groups for the different genome combinations.
Second option is to only plot a core and accessory curve by
including unique groups to the accessory.

	gains_losses_median_and/or_average.R, R scripts to plot the
average and median group gain and loss between pangenome sizes.

	heaps_law.R, an R script to perform Heaps’ law.

[image: _images/size.png]

Fig. 5 Example output of pangenome_growth.R (left)
and gains_losses_median_and_average.R (right) on a
pangenome of 204 bacteria.

Relevant literature

	Genome analysis of multiple pathogenic isolates of Streptococcus
agalactiae: Implications for the microbial “pan-genome”#1

	Comparative genomics: the bacterial pan-genome#2

Pangenome size k-mers

The same simulation as pangenome_size_genes, but performed on
k-mer sequences instead of homology groups. As the number of k-mers is
significantly higher than the number of homology groups, the runtime is
much longer and the (default) number of loops is set to only 100.

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--threads/-tn (default value: 1) : The number of parallel
working threads.

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

--value Number of loops (default is 100).

Example command

$ pantools pangenome_size_kmer -dp tomato_db
$ pantools pangenome_size_kmer -dp tomato_db --skip 4,5-9 --value 500
$ R script core_access_unique.R

Output

Output files are written to /database_directory/pangenome_size/kmer/

	pangenome_size_kmer.txt, statistics of the number of k-mers with
different pangenome sizes.

	core_access_unique.R, an R script to plot the number core,
accessory, unique k-mers for the different genome combinations.

	core_access.R, an R script to plot the number of core and accessory
(including unique) k-mers for the different genome combinations.

K-mer classification

Calculate the number of core, accessory, unique, (and phenotype
specific) k-mer sequences. Because k-mer sequences of non-branching
paths of the DBG graph are collapsed into a single node, k-mers are
first uncompressed before they are counted. When --mode compressed
is included, sequences are not uncompressed and considered as a single
k-mer. Nucleotide nodes with a ‘degenerate’ label contain letters
other than the four non-ambiguous ones (A, T, C, G). and are ignored by
this function.

Required argument

--database-path/-dp Path to the pangenome database.

Optional arguments

--phenotype/-ph A phenotype name, used to identify phenotype
specific k-mers.

--skip/-sk Exclude a selection of genomes. This automatically
lowers the threshold for core k-mers.

--reference/-ref Only include a selection of genomes. This
automatically lowers the threshold for core k-mers.

--core-threshold/-ct Threshold (%) for (soft) core k-mers.
Default is 100% of the genomes.

--unique-threshold/-ut Threshold (%) for unique/cloud
k-mers. Default is a single genome, not a percentage.

--phenotype-threshold/-pt Threshold (%) for phenotype
specific/shared k-mers. Default is 100% of genomes with phenotype.
--mode compressed Do not uncompress collapsed non-branching
k-mers for k-mer counting.

Example commands

$ pantools kmer_classification -dp tomato_DB
$ pantools kmer_classification -dp tomato_DB --phenotype resistant --skip 2,3,4
$ pantools kmer_classification -dp tomato_DB --mode compressed --core-threshold 95 --unique-threshold 5

Output

Output files are written to /database_directory/kmer_classification/

	kmer_classification_overview.txt, some general statistics and
percentages about the core, accessory unique k-mers per genome.

	kmer_occurrence.txt, the occurrence of k-mers per genome and
total occurrence in the pangenome.

	kmer_distance_tree.R, an R script to cluster genomes with four
different k-mer distances to choose from. For more information, see
The k-mers are ordered from high to low by the total number of
genomes the k-mer is found.

	unique_kmers.csv, the node identifiers of unique k-mers ordered
by genome.

	phenotype_specific_kmers.csv, the node identifiers of phenotype
specific k-mers.

	phenotype_shared_kmers.csv, the node identifiers of phenotype
shared k-mers.

Functional annotations

The following functions can only be used when any type of functional
annotation is
added to the database.

Functional classification

Similar to gene and k-mer classification, this function
identifies core, accessory, unique functional annotations in the
pangenome. Only the following functions are considered for this
analysis: biosynthetic gene clusters from antiSMASH, GO, PFAM, InterPro,
TIGRFAM.

Required arguments

--database-path/-dp Path to the pangenome database.

Optional commands

--phenotype/-ph A phenotype name, used to find functions
specific to a phenotype.

--skip/-sk Exclude a selection of genomes. This automatically
lowers the threshold for core genes.

--reference/-ref Only include a selection of genomes. This
automatically lowers the threshold for core genes.

--core-threshold/-ct Threshold (%) For (soft) core functions
(default is 100%).

--unique-threshold/-ut Threshold (%) For unique/cloud
functions (default is a single genome, not a percentage).

--annotations-file/-af A text file with the identifiers of
annotations that should be used. The most recent annotation is
selected for genomes without an identifier.

Example command

$ pantools functional_classification -dp tomato_DB
$ pantools functional_classification -dp tomato_DB -ph flowering_time

Output

Output files are written to
/database_directory/function/functional_classification/

	functional_annotation_overview, number of core, accessory, and
unique functions. Holds the number of phenotype shared and specific
functions when a phenotype is included.

	core_functions.txt, functional annotations found in every genome
of the pangenome.

	accessory_functions.txt, functional annotations labeled as
accessory.

	unique_functions.txt, functional annotations unique to a single
genome.

When a --phenotype is included

	phenotype_shared_functions.txt, functional annotations shared by
all phenotype members.

	phenotype_specific_functions.txt, functional annotations specific
to certain phenotypes.

Functional annotation overview

Creates several summary files for each type of functional annotation
present in the database: GO, PFAM, InterPro, TIGRFAM, COG, Phobius, and
biosynthetic gene clusters from antiSMASH. In addition to the functions
that must be added via
add_functional_annotations,
this function also requires proteins to be clustered by
group.

Required argument

--database-path/-dp Path to the pangenome database.

Optional commands

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

--annotations-file/-af A text file with the identifiers of
annotations that should be used. The most recent annotation is
selected for genomes without an identifier.

Example command

$ pantools function_overview -dp tomato_DB
$ pantools function_overview -dp tomato_DB --reference 2-4

Output

Output files are written to function directory in the database. The
overview CSV files are tables with on each row a function identifier
with the frequency of per genome and.

	functions_per_group_and_mrna.csv, overview of all homology groups
and the associated functions.

	function_counts_per_group.csv,

	go_overview.csv, overview of the GO terms in the pangenome.

	pfam_overview.csv, overview of the PFAM domains in the pangenome.

	tigrfam_overview.csv, overview of the TIGRFAMs in the pangenome.

	interpro_overview.csv, overview of the InterPro domains in the
pangenome.

	bgc_overview.csv, overview of the added biosynthetic gene
clusters from antiSMASH in the pangenome.

	phobius_signalp_overview.csv, overview of the included Phobius
transmembrane topology and signal peptide predictions in the
pangenome.

	cog_overview.csv, overview of the functional COG categories in
the pangenome.

	cog_per_class.R, an R script to plot the distribution of COG
categories over the core, accessory, unique homology groups.

[image: _images/COG_abundance.png]

Fig. 6 Example output of cog_per_class.R. The proportion of COGs
functional categories assigned to homology groups.

GO enrichment

For a given set of mRNA’s or homology groups, this function identifies
over or underrepresented GO terms by using a hypergeometric
distribution.

The p-value is calculated from the hypergeometric distribution

\[P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}\]

	Parameter N = size of the population (Universe of genes).

	Parameter n = size of the sample (signature gene set)

	Parameter K = successes in population (enrichment gene set)

	Parameter k = successes in sample (intersection of both gene sets)

	Return the p-value of the Hypergeometric Distribution for P(X=k)

Prepare input for hypergeometric tests

The size and number of successes of the sample (n, k) and background (N,
K) is prepared for each genome individually. Per genome, loops over
every mRNA and checks for connected GO nodes. Each GO node connected to
the mRNA is used to move up in the GO hierarchy via ‘is_a’ relations
until the molecular_function, biological_process or
cellular_component node is reached. Each GO term is counted only
once per mRNA and a mRNA needs at least one GO term to be included in
the sample and background sets. mRNA nodes which are part of the input
homology groups are included into the sample set.

Multiple testing correction

Critical p-value using Bonferroni

For a GO germ to be significant, the p-value should be below 0.05
divided by number of tests per genome. For example, when 100 tests were
performed, each p-value must be below 0.05/100 = 0.0005 to be considered
significant.

Critical p-value using Benjamini-Hochberg procedure

	Individual p-values are put in ascending order.

	Ranks are assigned to the p-values. The lowest value has a rank of 1,
the second lowest gets rank 2, etc..

	The individual p-values Benjamini-Hochberg critical value is
calculated using the formula \((i/m)Q\), where i is the individual
p-values rank, m = total number of tests and Q is the false discovery rate.

	Compare your original p-values to the critical B-H from Step 3; find
the largest p value that is smaller than the critical value.

The critical p-value for the first rank for a total of 100 GO terms
(tests) with a 5% false discovery rate is \((1/100) * 0.05 = 0.0005\). For
the second and third rank this will be 0.0010 and 0.0015, respectively.

Required software

	dot. Although this function still works when dot is not (properly)
installed, no visualizations of the GO hierarchy can be created.

Required arguments

--database-path/-dp Path to the database.

Requires either one of the following arguments

--homology-groups/-hm A text file with homology group node
identifiers, seperated by a comma --node mRNA node identifiers,
seperated by a comma on the command line

Optional arguments

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

--value The false discovery rate (percentage), default is 5%.

Example command

$ pantools go_enrichment -dp tomato_DB -hm unique_groups.txt
$ pantools go_enrichment -dp tomato_DB -hm pheno_specific.txt --value 1 -ref 1-3,5

Output

Output files are stored in
/database_directory/function/go_enrichment/.

	go_enrichment.csv, overview of all GO terms, p-values and the
significance of enrichment. The output is formatted as a table.

	go_enrichment_overview_per_go.txt, results of the analysis are
ordered by GO term.

	function_overview_per_mrna.txt, all functional annotations
connected to the input sequences, ordered per mRNA.

	function_overview_per_genome.txt, all functional annotations
connected to the input sequences, ordered per genome.

Additional files are generated per individual genome and placed in
/results_per_genome/.

	go_enrichment.txt, list of GO terms, p-values and the critical
p-values of Benjamin-Hochberg and Bonferroni.

	revigo.txt, a list of GO terms and p-values that can be
visualized on http://revigo.irb.hr

	bio_process.pdf, dot visualisation of the Biological Process GO
hierarchy.

	cell_comp.pdf, dot visualisation of the Cellular Component GO
hierarchy.

	mol_function.pdf, dot visualisation of the Molecular Function GO
hierarchy.

[image: _images/bio_process.png]

Fig. 7 Visualization of GO hierarchy by dot

Footnotes

	#1

	https://doi.org/10.1073/pnas.0506758102

	#2

	https://doi.org/10.1016/j.mib.2008.09.006

Phylogeny

There are six different methods implemented which can create
phylogenetic trees. The consensus tree method creates a Maximum
per-Locus Quartet-score Species Tree (MLQST) from a set of gene trees.
The other five methods use a Neighbour-joining (NJ) or Maximum
Likelihood (ML) algorithm to infer the phylogeny.

	Core phylogeny (ML)

	K-mer distance tree (NJ)

	Consensus tree

	Gene distance tree (NJ)

	ANI tree (NJ)

	MLSA (ML)

All functions produce tree files in Newick format that can be visualized
with iTOL or any other phylogenetic tree visualization software.

	Rename phylogeny

	Reroot phylogeny

	Create tree template

Core phylogeny

Infer a Maximum likelihood (ML) or Neighbour-Joining (NJ) phylogeny from
SNPs identified from single copy orthologous genes. This function
requires single-copy homology groups which are automatically detected if
gene_classification was run
before. The homology groups are aligned in two consecutive rounds with
msa.

When using --clustering-method ML, parsimony informative positions
are extracted from the trimmed alignments and concatenated into single
continuous sequence per genome. IQ-tree infers the ML tree with minimum
of 1000 bootstrap iterations.

The --clustering-method NJ method counts the total and shared number
of variable sites between two genomes in the alignment and calculates a
Jaccard distance (0-1):

\[D_J(A,B) = 1 - J(A,B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}\]

Required software

Please cite the appropriate tool(s) when using the core phylogeny in
your research.

	MAFFT#1

	IQ-tree#2 (Only required for ML)

Required arguments

--database-path/-dp Path to the database.

Optional arguments

--homology-groups/-hm A file with homology group node
identifiers of single copy groups. Default is
single_copy_orthologs.csv, generated in the previous
gene_classification run.

--clustering-method ML/--clustering-method NJ Maximum
likelihood (default) or Neighbour joining.

--mode protein Use proteins instead of nucleotide sequences.

--threads/-tn Number of threads (default is 1).

--phenotype/-ph Include phenotype information in the resulting
phylogeny.

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

Example commands

$ pantools core_phylogeny -dp tomato_DB -tn 24
$ pantools core_phylogeny -dp tomato_DB -tn 24 --clustering-method NJ --mode protein
$ pantools core_phylogeny -dp tomato_DB -tn 24 --clustering-method ML --phenotype resistance

Output

Output files are written to the core_snp_tree directory in the
database.

	sites_per_group.csv, number of parsimony informative and variable
sites per homology group.

When --clustering-method NJ is included

	core_snp_NJ_tree.R, Rscript to create NJ tree from distances
based on shared sites. Two distances can be selected, based on
variable sites and parsimony informative sites.

	shared_informative_positions.csv, table with total number of
shared parsimony informative sites between genomes.

	shared_variable_positions.csv, table with total number of shared
variable sites between genomes.

When --clustering-method ML is included

	informative.fasta, nucleotides from parsimony informative sites
of the alignments, concatenated into a single sequences per genomes.

	variable.fasta, nucleotides from variable sites of the alignment,
concatenated into a single sequences per genomes.

A command is generated which can be used to execute IQ-tree and infer
the phylogeny on informative.fasta.

	informative.fasta.iqtree, IQ-tree log file.

	informative.fasta.treefile, the ML phylogeny.

	informative.fasta.splits.nex, the splits graph. With ideal data,
this file is a tree, whereas data with conflicting phylogenetic
signals will result in a tree-like network. This type of tree/network
can be visualized with a tool like SplitsTree#3

K-mer distance tree

A NJ phylogeny of k-mer distances can be created by executing the
Rscript generated by
k-mer_classification.

Three types of distances can be selected to infer the phylogeny. The
first two distances are Jaccard distances (0-1): one considering only
distinct k-mers and the other using all k-mers. The distance from
distinct k-mers ignores additional copies of a k-mer.

\[\begin{align}\begin{aligned}D_J(A,B) &= 1 - J(A,B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}\\D_J(A,B) &= 1 - J(A,B) = \frac{|A \uplus B| - |A \cap B|}{|A \uplus B|}\end{aligned}\end{align} \]

We observed an exponential increase in the k-mer distance as the
evolutionary distance between two genomes increases. So in the case of
more distant genomes, the depicted clades are still correct but the
extreme long branch lengths make the tree hard to decipher. To normalize
the numbers, we implemented the MASH distance#4.
Distance = −1/𝑘 * ln(J), where k is the k-mer length; J is the jaccard
index (of distinct k-mers).

$ Rscript genome_kmer_distance_tree.R

Output file

The phylogenetic tree genome_kmer_distance_tree.tree is written to
the kmer_classification directory in the database.

Consensus tree

Create a consensus tree by combining gene trees from homology groups
using ASTRAL-Pro. Gene trees are created from all sequences in an
homology groups, no genomes can be skipped.

Required software

Please cite MAFFT, FastTree and ASTRAL-Pro when using the consensus tree
in your research.

	MAFFT#5

	FastTree#6

	ASTRAL-Pro#7

Required arguments

--database-path/-dp Path to the database.

Optional arguments

--threads/-tn Number of threads (default is 1).

--homology-groups/-hm A file with homology group node
identifiers. Default is all_homology_groups.csv, generated in the
previous gene_classification
run.

Example commands

$ pantools consensus_tree -dp apple_DB -tn 24
$ pantools consensus_tree -dp apple_DB -tn 24 -hm apple_DB/gene_classification/group_identifiers/all_homology_groups.csv
$ pantools consensus_tree -dp apple_DB -tn 24 -hm apple_DB/gene_classification/group_identifiers/core_homology_groups.csv
$ pantools consensus_tree -dp apple_DB -tn 24 -hm apple_DB/gene_classification/group_identifiers/accessory_homology_groups.csv

Output

Output files are written to the consensus_tree directory in the
database.

	all_trees.hmgroups.newick, all gene trees of homology groups
included in the analysis, combined into a single file.

	consensus_tree.astral-pro.newick, the output consensus tree from
ASTRAL-Pro.

Relevant literature

	ASTRAL-Pro: quartet-based species-tree inference despite paralogy.
Molecular biology and evolution#8

Gene distance tree

A NJ phylogeny of gene distances is created by executing the Rscript
generated by
gene_classification.

Shared genes between genomes are identified through homology groups. Two
Jaccard distance (0-1) can be used to infer a tree: one considering only
distinct genes and the other using all genes. The distance from distinct
genes ignores additional gene copies in an homology group.

\[\begin{align}\begin{aligned}D_J(A,B) &= 1 - J(A,B) = \frac{|A \cup B| - |A \cap B|}{|A \cup B|}\\D_J(A,B) &= 1 - J(A,B) = \frac{|A \uplus B| - |A \cap B|}{|A \uplus B|}\end{aligned}\end{align} \]

$ Rscript gene_distance_tree.R

Output file

The phylogenetic tree gene_distance_tree.tree is written to the
gene_classification directory in the database.

ANI tree

Average Nucleotide Identity (ANI) is a measure of nucleotide-level
genomic similarity between the coding regions of two prokaryotic
genomes. Two very fast ANI estimation tools (fastANI and MASH)
are implemented and are able to perform the pairwise comparisons between
genomes in the pangenome. To convert the ANI score into a distance
(0-1), the scores are transformed by \(1-(ANI/100)\).

Required software

The required software depends on the tool you want to use. Please cite
the appropriate tool when using the ANI tree in your research.

	fastANI#9

	MASH#10

Required argument

--database-path/-dp Path to the database.

Optional arguments

--mode mash/--mode fastani Software to calculate ANI score
(default is MASH)

--phenotype/-ph Include phenotype information in the
phylogeny.

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

--threads/-tn Number of threads used by FastANI (default is
1). MASH is single threaded (and currently not parallelized yet).

Example command

$ pantools ani -dp pecto_DB
$ pantools ani -dp pecto_DB --phenotype species_name --mode fastani
$ pantools ani -dp pecto_DB --skip 4,5,6 --mode mash

Output

Output files are written to the ANI directory in the database.

	ANI_scores.csv, a table with ANI scores for all genome pairs.

	ANI_distance_matrix.csv, a table with the ANI distances (1-ANI).
This matrix is read by ANI_tree.R.

	ANI_tree.R, Rscript to generate NJ tree from ANI distances

Find closest typestrain

Compares bacterial strains to the typestrain when this information is
available in a pangenome database.

	Add the ‘typestrain’ phenotype to the pangenome with
add_phenotypes. You only have to
include typestrains names, other genomes can be left empty as shown
in the example below, five genomes with three different typestrains.

	Run the ANI function

	The ‘typestrain’ phenotype is recognized, and
typestrain_comparison.csv is created. This file contains the
highest score of each genome(5) against all the included typestrains
and states whether the score is above 95%.

Genome,typestrain
1,Salmonella choleraesuis NCTC 5735
2,Salmonella enteritidisi NCTC 12694
3,
4,Salmonella paratyphi NCTC 5702
5,

Relevant literature

	High throughput ANI analysis of 90K prokaryotic genomes reveals clear
species boundaries#11

	Mash: fast genome and metagenome distance estimation using MinHash#12

MLSA

Within PanTools you can perform a Multilocus sequence analysis
(MLSA) by running three consecutive functions:

	mlsa_find_genes

	mlsa_concatenate

	mlsa

Step 1 Search for genes

Find your genes of interest in the pangenome and extract their
nucleotide and protein sequence. A regular search is not case sensitive
but the gene names must exactly match the given input name. For example,
searching a gene with ‘sonic1’ as query will not be able find ‘sonic’,
but is able to find Sonic1, SONIC1 or sOnIc1. Including the
--mode extensive argument allows a more relaxed search and using
‘sonic’ will now also find gene name variations as ‘sonic1’, ‘sonic3’
etc.. For this function it is important that genomes are annotated by a
method that follow the rules for genetic nomenclature, so there are no
differences in the naming of genes.

To gain insight in which genes are appropriate for this analysis, run
gene_classification with the
--mode mlsa argument. This method creates a list of genes that have
same gene name, are present in all (selected) genomes and are placed in
the single-copy homology group. Using genes from this list guarantees a
successful MLSA.

Possible generated warnings during gene search

When a gene is included that is not on the list of suitable genes, it is
not necessarily unusable but possibly requires manual . This function
generates a log file with the issues and explains the user what to do.

	Gene is not found in every genome. Consider using
--mode extensive. The gene is not suitable with the current
genome selection when this argument was already included.

	The found genes are placed in different homology groups. A directory
named the gene name is created where sequences are stored in a
separate file per homology group. When one of the groups is single
copy orthologous, it is automatically selected. With multiple correct
single-copy groups, the first is selected. If no single-copy groups
are found, this gene is probably not a suitable candidate based on
the high divergence. If you are determined to use the gene, align and
infer a gene tree on all_sequences.fasta to identify appropriate
sequences.

	At least one gene has an additional copy. The extra copies must be
removed from the output file if you want to include this gene in the
analysis. Find the copies that stand out by aligning and inferring a
gene tree of the homology group.

Required arguments

--database-path/-dp Path to the database.

--name One or multiple gene names, seperated by a comma.

Optional arguments

--mode extensive Perform a more extensive gene search.

--skip/-sk Do not search for genes in this selection of
genomes.

--reference/-ref Only search for genes in a selection of
genomes.

Example command

$ pantools mlsa_find_genes -dp bacteria_DB --name dnaX,gapA,recA
$ pantools mlsa_find_genes -dp bacteria_DB --name gapA --mode extensive

Output

Output files are written to the mlsa/input/ directory in the
database. For each gene name that was included, a nucleotide and protein
and FASTA file is created that holding the sequences found in all
genomes.

	mlsa_find_genes.log, when one or multiple warnings are given they
are placed in this log file. File is not created when there aren’t
any warnings.

Step 2 Concatenate genes

Concatenate sequences obtained by
mlsa_find_genes into a single
sequence per genome. The --name argument is required, but the
selection of gene names is allowed to be a sub-selection of the earlier
selection.

	Proteins are aligned with MAFFT

	The longest gap at the start and end of each protein alignment is
identified.

	Nucleotide sequences are trimmed accordingly

	Trimmed nucleotide sequence are concatenated into a single sequence
per genome.

Required software

	MAFFT#13

Required arguments

--database-path/-dp Path to the database.

--name One or multiple gene names, seperated by a comma.

Optional arguments

--skip/-sk Exclude a selection of genomes.

--reference/ref Only include a of genomes.

--threads/-tn Number of threads for MAFFT (default is 1).

Example command

$ pantools mlsa_concatenate -dp bacteria_DB --name dnaX,gapA
$ pantools mlsa_concatenate -dp bacteria_DB --name dnaX,gapA,recA --skip 1,2,10-25

Output

The output file is stored in /database_directory/mlsa/input/

	concatenated.fasta, file holding one concatenated sequence per
genome.

Step 3 Run MLSA

Run MAFFT and IQ-tree on the concatenated nucleotide sequences from
mlsa_concatenate
to create an unrooted ML tree with 1,000 bootstrappings.

Required software

Please cite the MAFFT and IQ-tree when using the MLSA in your research.

	MAFFT#14

	IQ-tree#15

Required argument

--database-path/-dp Path to the database.

Optional arguments

--threads/-tn Select number of threads for MAFFT and IQ-tree
(default is 1).

--phenotype/-ph Add phenotype information/values to the
phylogeny. Allows the identification of phenotype specific SNPs in the
alignment.

Example commands

$ pantools mlsa -dp bacteria_DB
$ pantools mlsa -dp bacteria_DB -tn 24 -ph species

Output

Input and output files are written to the mlsa/output/ directory in
the database.

	mlsa.afa, the alignment in CLUSTAL format.

	mlsa.fasta, the alignment in FASTA format.

	mlsa.fasta.treefile, the (ML) phylogeny created by IQ-tree in
Newick format.

When a --phenotype is included

	nuc_phenotype_specific_changes.info, the positions of phenotype
specific substitutions in the alignment.

The var_inf_positions directory holds files related to the counting
variable positions of the alignment.

	nuc_variable_positions.csv, a table with the counts of A, T, C,
G, or gap for every variable position in the alignment

	informative_nuc_distance.csv, a table with distances calculated
from parsimony informative positions in the alignment.

	informative_nuc_site_counts.csv, a table with number of shared
parsimony informative positions between genomes.

	variable_nuc_distance.csv, a table with distances calculated from
variable positions in the alignment.

	variable_nuc_site_counts.csv, a table with number of shared
positions between genomes.

Edit Phylogeny

Rename phylogeny

Update or the terminal nodes (leaves) of a phylogenic tree. This is
useful when you already constructed a tree but forgot to include a
phenotype or to update the tree with a different phenotype. When no
--phenotype is included, the node values are changed to genome
numbers.

Required arguments

--database-path/-dp Path to the database.

--input-file/-if A phylogenetic tree in newick or
nexus format. The tree must be generated by PanTools.

Optional arguments

--phenotype/-ph The phenotype used to rename the terminal nodes
(leaves) of selected tree. --mode no-numbers Exclude genome numbers
from the terminal nodes (leaves).

Example command

$ pantools rename_phylogeny -dp bacteria_DB -if core_snp.tree
$ pantools rename_phylogeny -dp bacteria_DB --phenotype species -if bacteria_DB/ANI/fastANI/ani.tree

Output file

A new phylogenetic tree is written to the directory of the selected
input tree:

	When the original file is called ‘old_tree.newick’, a new tree is
created with filename ‘old_tree_RENAMED.newick’.

Reroot phylogeny

All phylogenetic trees that come from the PanTools functionalities are
unrooted. This function is able to create a new rooted tree simply by
selecting one of the external (terminal) nodes via --value. The
included number or string should match exactly one node in the phylogeny
or the program will not execute.

Required software

	ape 5#16

Required arguments

--input-file/-if A phylogenetic tree in newick format. The
tree must be generated by PanTools.

--value The name of the terminal node that will root the tree.

Example command

$ pantools reroot_phylogeny -if core_snp.tree --value 1
$ pantools reroot_phylogeny -if core_snp.tree --value 1_A.thaliana
$ pantools reroot_phylogeny -if kmer.tree --value 1_1
$ Rscript reroot.R

Output file

A new phylogenetic tree is written to the same location as the provided
input file

	When the original tree is called ‘tree.newick’, the new file is
named ‘tree_REROOTED.newick’.

Create tree template

Creates ‘ring’ and ‘colored range’ ITOL templates based on phenotypes
for the visualization of phylogenies in iTOL. Phenotypes must already be
included in the pangenome with the
add_phenotypes functionality. How to
use the template files in iTOL can be found in one of the
tutorials.

If you run this function without a --phenotype argument, templates
are created for trees that contain only genome numbers as node labels.
When there is a --phenotype included, templates are created where
the leaves are named according to the selected phenotype but are
coloured by one of the other phenotypes in the pangenome. For example,
you originally used the ‘species name’ as a phenotype to construct the
phylogeny but want them to be coloured by the ‘pathogenicity’ phenotype.

More information about ITOL templates can be found on
their own webpage#17.

There is a maximum of 20 possible colors that are used in the following
order:

	
	Color (> 8 phenotypes)

	Hexadecimal color

	Color (≤ 8 phenotypes)

	Hexadecimal color

	1

	Pink

	#fabebe

	Orange

	#E69F00

	2

	Lime

	#bfef45

	Sky blue

	#56B4E9

	3

	Cyan

	#42d4f4

	Bluish green

	#009E73

	4

	Apricot

	#ffd8b1

	Yellow

	#F0E442

	5

	Mint

	#aaffc3

	Blue

	#0072B2

	6

	Beige

	#fffac8

	Vermilion

	#D55E00

	7

	Lavender

	#e6beff

	Reddish purple

	#CC79A7

	8

	Teal

	#469990

	Grey

	#999999

	9

	Red

	#e6194B

	
	

	10

	Orange

	#f58231

	
	

	11

	Yellow

	#ffe119

	
	

	12

	Green

	#3cb44b

	
	

	13

	Blue

	#4363d8

	
	

	14

	Purple

	#911eb4

	
	

	15

	Grey

	#a9a9a9

	
	

	16

	Maroon

	#800000

	
	

	17

	Olive

	#808000

	
	

	18

	Brown

	#9A6324

	
	

	19

	Navy

	#000075

	
	

	20

	Magenta

	#f032e6

	
	

[image: _images/color_templates.png]

Figures were copied from:

http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/

https://sashamaps.net/docs/resources/20-colors/

Required argument

--database-path/-dp Path to the database.

Optional argument

--phenotype/-ph Use the names from this phenotype.

--value 1 Assign a color to phenotypes shared by only a single
genome. If not set, default is a minimum of two genomes.

Example command

$ pantools create_tree_template -dp bacteria_DB
$ pantools create_tree_template -dp bacteria_DB --phenotype flowering --value 1
$ pantools create_tree_template -dp bacteria_DB --phenotype root_morph --value 3

Output

Output files are written to the create_tree_template directory in
the database.

	When no phenotype information is included, a directory
‘genome_numbers’ is created where the templates are stored.

	When a --phenotype is included, a directory (named after the
phenotype) is created where the templates are stored.

The template files are named after the phenotypes, therefore the colors
are based on that phenotype as well.

Footnotes

	#1

	https://mafft.cbrc.jp/alignment/software/

	#2

	http://www.iqtree.org

	#3

	https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/splitstree/

	#4

	https://uni-tuebingen.de/fakultaeten/mathematisch-naturwissenschaftliche-fakultaet/fachbereiche/informatik/lehrstuehle/algorithms-in-bioinformatics/software/splitstree/

	#5

	https://mafft.cbrc.jp/alignment/software/

	#6

	http://microbesonline.org/fasttree/

	#7

	https://github.com/chaoszhang/A-pro

	#8

	https://doi.org/10.1093/molbev/msaa139

	#9

	https://github.com/ParBLiSS/FastANI

	#10

	https://github.com/marbl/Mash

	#11

	https://doi.org/10.1038/s41467-018-07641-9

	#12

	https://doi.org/10.1186/s13059-016-0997-x

	#13

	https://mafft.cbrc.jp/alignment/software/

	#14

	https://mafft.cbrc.jp/alignment/software/

	#15

	http://www.iqtree.org"target="_blank

	#16

	http://cran.r-project.org/package=ape

	#17

	https://itol.embl.de/help.cgi

Multiple Sequence Alignments

This page is entirely dedicated to performing Multiple Sequence
Alignments (MSA) with PanTools.

Sequence alignments

Alignment of homology groups

Performs multiple sequence alignments with MAFFT on sets of sequences.
These alignments can either be:

	per homology group

	multiple homology groups

	regions

	with all sequences containing a functional domain

The alignment consists of two rounds: After the initial alignment,
protein sequences are trimmed based on the longest start and end gap of
the alignment. The number of trimmed amino acids is multiplied by three
to trim the correct number of nucleotides. If only nucleotide sequences
are aligned, the nucleotide sequence alignment is used for trimming. The
trimmed sequences are aligned a second time to identify variable and
parsimony informative sites. For each round, a ML phylogeny will be
created with FastTree.

Select a method

By default, this function will make a MSA per homology group. (It can
still be specified with --method per_group.) Using another option
from the list above requires use of the --method argument. For
aligning multiple homology groups, please use
--method multiple_groups with the homology groups specified in a
csv file on a single line (can be added with -hm /path/to/hm.csv.
For aligning regions, please use --method regions with a regions
file that is added with -rf /path/to/rf.txt. For aligning
sequences based on a functional domain, please use
--method functions together with a functional domain that is added
with --name <domain>.

Other options

In case you are only interested in the alignment of the nucleotide or
protein sequences, use --mode nucleotide or --mode protein.
When the --no-trimming argument is included, the variable and
parsimony informative sites are identified from the initial alignment
and no trimming is performed (thus, only one round of aligning). The
option --fast can be used to skip running FastTree, which is used
for generating a tree from the alignment.

Identify phenotype shared or specific variation

Shared SNPs or amino acid substitutions can be found among the members
of a phenotype when --phenotype <phenotype> is included. As
homology groups can highly differ in size, the threshold for a
phenotype shared or specific SNP/substitution is based on the number
of sequences (from a certain phenotype) of an homology group instead
of the number of genomes in the pangenome. For example, the pangenome
holds 500 genomes but the homology group consists of only 100
sequences. The threshold can be lowered by including
--phenotype-threshold <threshold>, which lowers the original
threshold by multiplying it to a given percentage.

Sequence identity and similarity

- The percentage identity of two sequences is calculated based on
the number of exactly matching characters divided by the alignment
length minus the positions were both sequences have a gap.

- The similarity (protein only) is calculated from the number of
identical matches, increased by the number of similar amino acids
(according to the BLOSUM 62 matrix), divided by the alignment length
minus the shared gap positions. The calculated percentage of
similarity is dependant on the BLOSUM matrix set by --blosum.
Choose a larger BLOSUM number BLOSUM less divergent sequences.

Required software

	MAFFT#1

	FastTree#2

Required arguments

--database-path/-dp Path to the database

Optional arguments

--method The kind of alignment to make. Can be either
per_group, multiple_groups, regions or functions.

--homology-groups/-hm Text file with homology group node
identifiers. Default is all groups!

--phenotype/-ph a phenotype name, used to identify phenotype
specific SNPs/substitutions.

--phenotype-threshold Threshold for phenotype specific SNPs (default
is 100%).

--skip and --reference/-ref Skip over a selection of
genomes.

--threads-number/-tn The number of parallel working threads for
MAFFT and FastTree (Highly recommended! default is 1).

--mode nucleotide or --mode protein Choose to only align
nucleotide or protein sequences (default is both).

--no-trimming Align the sequences only once.

--fast Don’t run FastTree.

--name For specifying one or multiple functional domains. (Only used
when --method functions.)

--regions-file/-rf Regions file for aligning regions. (Only used
when --method regions.)

--blosum a BLOSUM matrix number to control MAFFT’s sensitivity and
the similarity calculation. Allowed values: 45, 62 (default), 80.

Example regions file

Each line must have a genome number, sequence number, begin and end
positions that are separated by a space. Place a minus symbol behind a
region to extract the reverse complement sequence.

1 1 1 10000
195 1 477722 478426
71 10 17346 18056 -
138 47 159593 160300 -

Example commands

$ pantools msa -dp tomato_DB
$ pantools msa -dp tomato_DB -hm hmgroups.txt --mode protein
$ pantools msa -dp tomato_DB -hm hmgroups.txt --mode nucleotide --no-trimming
$ pantools msa -dp tomato_DB -hm hmgroups.txt --phenotype resistance --phenotype-threshold 99
$ pantools msa --method multiple_groups -dp tomato_DB
$ pantools msa --method multiple_groups -dp tomato_DB -hm hmgroups.txt --mode protein
$ pantools msa --method multiple_groups -dp tomato_DB -hm hmgroups.txt --phenotype resistance --phenotype-threshold 95
$ pantools msa --method regions -dp tomato_DB -rf regions.txt
$ pantools msa --method functions -dp tomato_DB --name PF10137

Output files

Output files are stored in database_directory/alignments/msa_/grouping_v?/
A separate directory is created for each alignment which holds the input
and output files.

The ‘input’ directory contains the input files for the alignments.

	nuc/prot(_trimmed).fasta, original and trimmed input sequences.

	trimmed.info, number of trimmed positions per sequence.

	sequences.info, relevant gene information of sequences in group:
gene names, mRNA node id, address, strand orientation.

The alignments and output files are written to the ‘output’ directory.

	nuc/prot(_trimmed).afa, the initial and second (trimmed)
alignment in CLUSTAL format.

	nuc/prot(_trimmed).fasta, the initial and second (trimmed)
alignment in FASTA format.

	nuc/prot(_trimmed).newick, FastTree ML tree inferred from the
initial and second (trimmed) alignment.

	nuc/prot(_trimmed)_alignment.info, some statistics about the
initial and second (trimmed) alignment: alignment length, number of
conserved, variable and parsimony informative sites

Sequence identity and similarity output files.

	nuc/prot(_trimmed)_identity.csv, table with the sequence
identity scores.

	prot(_trimmed)_similarity.csv, table with similarity of the
protein sequences.

Variable and parsimony informative sites output files.

	informative_nuc/prot(_trimmed)_distance.csv, table with
distances between sequences based on parsimony informative sites in
the alignment.

	variable_nuc/prot(_trimmed)_distance.csv, table with distances
between sequences based on variable sites in the alignment.

	informative_nuc/prot(_trimmed)_sites.csv, table with the number
shared parsimony informative sites between sequences.

	variable_nuc/prot(_trimmed)_sites.csv, table with the number of
shared variable sites between sequences.

When a --phenotype is included.

	phenotype_specific_changes_nuc/prot_groups.csv, the node
identifiers of homology groups with phenotype specific substitutions.

	phenotype_specific_changes_nuc/prot.txt, the positions of
phenotype specific substitutions in the alignments.

	phenotype_disrupted_nuc/prot.txt, shows how many sequences of
different phenotypes prevented a SNP/substitution from becoming
phenotype specific.

Footnotes

	#1

	https://mafft.cbrc.jp/alignment/software/

	#2

	http://microbesonline.org/fasttree/

Explore the pangenome

The functionalities on this page allow to actively explore the
pangenome.

	Retrieve regions from the pangenome

	Retrieve sequences and functional annotations from homology groups

	Search for genes using a gene name, functional annotation or database
node identifier

	Align homology groups or genomic regions

	GO enrichment analysis

Gene locations

Identify and compare gene clusters of neighbouring genes based on a set
of homology groups. First, identifies the genomic position of genes in
homology groups, retrieves the order of genes per genome and based on
this construct the gene clusters. If homology groups with multiple
genomes were selected, the gene cluster composition is compared between
genomes. When a --phenotype is included, gene clusters can be found
that only consist of groups of a certain phenotype.

For example, 100 groups were predicted as core in a pangenome of 5
genomes. The gene clusters are first identified per genome, after which
it compares the gene order of one genome to all the other genomes. The
result could be 75 groups with genes that are not only homologous but
also share their gene neighbourhood. Another example, when accessory
(present 2 in to 4 genomes) groups are given to this function in
combination with a --phenotype (assigned to only two genomes), the
function can return clusters that can only be found in the phenotype
members.

Required arguments

--database-path/-dp Path to the database.

--homology-groups/-hm A text file with homology group node
identifiers, seperated by a comma.

Optional arguments

--phenotype/-ph A phenotype name, used to identify gene
clusters shared by all phenotype members.

--value The number of allowed nucleotides between two neighbouring
genes (default is 1 MB).

--gap-open/-go When constructing the clusters, allow a number
of genes for each cluster that are not originally part of the input
groups (default is 0).

--core-threshold Lower the threshold (%) for a group to be
considered (soft) core (default is the total number of genomes found
in the groups, not a percentage).

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

--mode ignore-copies Duplicated and co-localized genes no longer
break up clusters.

Example command

$ pantools locate_genes -dp tomato_DB -hm phenotype_groups.csv
$ pantools locate_genes -dp tomato_DB -hm unique_groups.csv --value 5000 -go 1
$ pantools locate_genes -dp tomato_DB -hm accessory_groups.csv --core-threshold 95 -go 1

Output files

Output files are stored in database_directory/locate_genes/

	gene_clusters_by_position.txt, the identified gene clusters
ordered by their position in the genome.

	gene_clusters_by_size.txt, the identified gene clusters ordered
from largest to smallest.

	compare_gene_clusters, the composition of found gene clusters is
compared to the other genomes. For each cluster, it shows which parts
match other clusters and which parts do not. The file is not created
when homology groups only contain proteins of a single genome
(unique).

When a --phenotype is included

	phenotype_clusters, homology group node identifiers from
phenotype shared and specific clusters.

	compare_gene_clusters_PHENOTYPE.txt, the same information as
compare_gene_clusters but now the gene cluster comparison is only
done between phenotype members.

Find genes

Find genes by name

Find your genes of interest in the pangenome by using the gene name and
extract the nucleotide and protein sequence. To be able to find a gene,
every letter of the given input must match a gene name. The search is
not case sensitive. Performing a search with ‘sonic1’ as query will not
be able find ‘sonic’, but is able to find Sonic1, SONIC1 or sOnIc1.
Including the --mode 1 argument allows a more relaxed search and
using ‘sonic’ will now also find gene name variations as ‘sonic1’,
‘sonic3’ etc..

Be aware, for this function to work it is important that genomes are
annotated by a method that follows the rules for genetic nomenclature.
Gene naming can be inconsistent when different tools are used for genome
annotation, making this functionality ineffective.

This function is the same as
mlsa_find_genes but
uses a different output directory. Several warnings (shown in the other
manual) can be generated during the search. These warning are less
relevant for this function as the genes are not required to be single
copy-orthologous.

Required arguments

--database-path/-dp Path to the database.

--name One or multiple gene names, seperated by a comma.

Optional arguments

--skip/-sk Exclude a selection of genomes.

--reference/-ref Exclude a selection of genomes.

--mode extensive Perform a more extensive gene search.

Example command

$ pantools find_genes_by_name -dp tomato_DB --name dnaX,gapA,recA
$ pantools find_genes_by_name -dp tomato_DB --name gapA --mode extensive

Output files

Output files are stored in /database_directory/find_genes/by_name/.
For each gene name that was included, a nucleotide and protein and
.FASTA file is created with sequences found in all genomes.

	find_genes_by_name.log, relevant information about the extracted
genes: node identifier, gene location, homology group etc..

Find genes by annotation

Find genes of interest in the pangenome that share a functional
annotation node and extract the nucleotide and protein sequence.

Required arguments

--database-path/-dp Path to the database.

Requires either one of the following arguments

--node One or multiple identifiers of function nodes (GO,
InterPro, PFAM, TIGRFAM), seperated by a comma.

--name One or multiple function identifiers (GO, InterPro, PFAM,
TIGRFAM), seperated by a comma.

Optional arguments

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

Example command

$ pantools find_genes_by_annotation -dp tomato_DB --node 14928,25809
$ pantools find_genes_by_annotation -dp tomato_DB --name PF00005,GO:0000160,IPR000683,TIGR02499

Output files

Output files are stored in
/database_directory/find_genes/by_annotation/. For each function
(node) that was included, a nucleotide and protein and .FASTA file is
created with sequences from the genes that are connected to the node.

	find_genes_by_annotation.log, relevant information about the
extracted genes: node identifier, gene location, homology group etc..

Find genes in region

Find genes of interest in the pangenome that can be (partially) found
within a given region (partially). For each found gene, relevant
information, the nucleotide sequence and protein sequence is extracted.

Required arguments

--database-path/-dp Path to the database.

--regions-file/-rf A text file containing genome locations
with on each line: a genome number, sequence number, begin and end
position, separated by a space.

Optional arguments

--mode partial Also retrieve genes that only partially overlap the
input regions.

Example input file

Each line must have a genome number, sequence number, begin and end
positions that are separated by a space.

195 1 477722 478426
71 10 17346 18056
138 47 159593 160300

Example command

$ pantools find_genes_in_region -dp tomato_DB -rf regions.txt
$ pantools find_genes_in_region -dp tomato_DB -rf regions.txt --mode partial

Output files

Output files are stored in /database_directory/find_genes/in_region/.
For each region that was included, a nucleotide and protein and .FASTA
file is created with sequences from the genes that are found within the
region.

	find_genes_in_region.log, relevant information about the
extracted genes: node identifier, gene location, homology group etc..

Functional annotations

The following functions can only be used when any type of functional
annotation is
added to the database.

Show GO

For a selection of ‘GO’ nodes, retrieves connected ‘mRNA’ nodes,
child and all parent GO terms that are higher in the GO hierarchy. This
function follows the ‘is_a’ relationships of GO each node to their
parent GO term until the ‘biological process’, ‘molecular function’ or
‘cellular location’ node is reached. This can be is useful in case
InterProScan annotations were included, as these only add the most
specific GO terms of the hierarchy to a sequence.

Required arguments

--database-path/-dp Path to the database

Requires either one of the following arguments

--node One or multiple identifiers of ‘GO’ nodes, seperated by a
comma.

--name One or multiple GO term identifiers, seperated by a comma.

Example commands

$ pantools show_go -dp tomato_DB --node 15078,15079
$ pantools show_go -dp tomato_DB --name GO:0000001,GO:0000002,GO:0008982

Output file

	show_go.txt, information of the selected GO node(s): the
connected ‘mRNA’ nodes, the GO layer below, and all layers above.

Compare GO

Check if and how similar two given GO terms are. For both nodes, follows
the ‘is_a’ relationships up to their parent GO terms until the
‘biological process’, ‘molecular function’ or ‘cellular location’ node
is reached. After all parent terms are found, the shared GO terms and
their location in the hierarchy is reported.

Required arguments

--database-path/-dp Path to the database.

Requires either one of the following arguments

--node Two node identifiers of ‘GO’ nodes, seperated by a comma.

--name Two GO identifiers, seperated by a comma.

Example command

$ pantools compare_go -dp tomato_DB --name GO:0032775,GO:0006313
$ pantools compare_go -dp tomato_DB --node 741487,741488

Output file

Output files are stored in database_directory/function/

	compare_go.txt, information of the two GO nodes: the connected
‘mRNA’ nodes, the GO layer below, all layers above and the shared GO
terms between the two nodes.

Homology group information

Report all available information of one or multiple homology groups.

Required arguments

--database-path/-dp Path to the database.

--homology-groups/-hm A text file with homology group node
identifiers, seperated by a comma

Optional arguments

--label Name of function identifiers from GO, PFAM, InterPro or
TIGRAM. To find Phobius (P) or SignalP (S) annotations, include:
‘secreted’ (P/S), ‘receptor’ (P/S), or ‘transmembrane’ (P).

--name One or multiple gene names, seperated by a comma.

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

Example command

$ pantools group_info -dp yeast_DB -hm core_groups.txt
$ pantools group_info -dp yeast_DB -hm core_groups.txt --label GO:0032775,GO:0006313 --name budC,estP

Output files

Output files are stored in
database_directory/alignments/grouping_v?/groups/. For each homology
group that was included, a nucleotide and protein and .FASTA file is
created with sequences found in all genomes.

	group_info.txt, relevant information for each homology group:
number of copies per genome, gene names, mRNA node identifiers,
functions, protein sequence lengths, etc..

	group_functions.txt, full description of the functions found in
homology groups

When function identifiers are included via --label

	groups_with_function.txt, homology group node identifiers from
groups that match one of the input functions.

When gene names are included via --name

	groups_with_name.txt, homology group node identifiers from groups
that match one of the input gene ames.

Sequence alignments

The manual for PanTools’ sequence alignment functionalities moved to a
standalone page - Multiple Sequence Alignments.

Matrix files

Several functions generate tables in a CSV file format. as tables that
the following functions can work with. For example, ANI scores, k-mer
and gene distance used for constructing the Neighbour Joining
phylogenetic trees, and the identity and
protein sequence similarity tables created by the
alignment functions.

Order matrix

Transforms the CSV table to easy to read file by ordering the values in
ascending order from low to high or descending order when
--mode desc is included in the command. If phenotype information is
included in the header, a separate file with the range of found values
is created for each phenotype. If this information is not present (only
genome numbers in the header), use
rename_matrix to change the headers.

Required argument

--database-path/-dp Path to the database.

--input-file/-af A CSV formatted matrix file.

Optional argument

--skip/-sk Skip over the values of a selection of genomes.

--reference/-ref Only include the values from a selection of
genomes.

--mode asc or --mode desc Order the matrix in ascending or
descending order (ascending is default).

Example command

$ pantools order_matrix -dp bacteria_DB -if bacteria_DB/ANI/fastANI/ANI_distance_matrix.csv
$ pantools order_matrix -dp bacteria_DB -if bacteria_DB/ANI/fastANI/ANI_distance_matrix.csv --mode desc

Output file

Output is written to the same directory as the selected input file

	‘old file name’ + ‘_ORDERED’, ordered values of the original
matrix file.

When phenotype information is present in the header

	‘old file name’ + ‘_PHENOTYPE’, range of values per phenotype.

Rename matrix

Rename the headers (first row and leftmost column) of CSV formatted
matrix files. If no --phenotype is included, headers are changed to
only contain genome numbers.

Required arguments

--database-path/-dp Path to the database.

--input-file/-af a matrix file with numerical values.

Optional arguments

--phenotype/-ph A phenotype name, used to include phenotype
information into the headers.

--skip/sk Exclude a selection of genomes from the new matrix
file. --reference/-ref Only include a selection of genomes in
the new matrix file.

--mode no-numbers Exclude genome numbers from the headers.

Example command

$ pantools rename_matrix -dp pecto_DB -phenotype species -if pecto_DB/ANI/fastANI/ANI_distance_matrix.csv

Output file

Output is written to the same directory as the selected input file.

	‘old file name’ + ‘_RENAMED’, the original matrix file with
changed headers.

Retrieve regions, genomes or features

The two following functions allow users to retrieve genomic regions from
the pangenome.

Retrieve regions

Retrieve the full genome sequence or genomic regions from the pangenome.

Required arguments

--database-path/-dp Path to the database.

--regions-file/-rf A text file containing genome locations
with on each line: a genome number, sequence number, begin and end
positions separated by a space.

Example command

$ pantools retrieve_regions -dp pecto_DB -rf regions.txt

Example input

To extract:

	Complete genome - Include a genome number

	An entire sequence - Include a genome number with sequence number

	A genomic region - Include a genome number, sequence number, begin
and end positions that are separated by a space. Place a minus symbol
behind the regions to extract the reverse complement sequence of the
region.

1
1 1
1 1 1 10000
1 1 1000 1500 -
195 1 477722 478426
71 10 17346 18056 -
138 47 159593 160300 -

Output file

A single FASTA file is created for all given locations and is stored in
the database directory.

Retrieve features

To retrieve the sequence of annotated features from the pangenome.

Required arguments

--database-path/-dp Path to the database.

--feature-type or -ft The feature name; for example ‘gene’,
‘mRNA’, ‘exon’, ‘tRNA’, etc.

Optional arguments

Use one of the following arguments to limit the sequence retrieval to a
selection of genomes.

--skip/-sk Exclude a selection of genomes.

--reference/-ref Only include a selection of genomes.

Example command

$ pantools retrieve_features -dp pecto_DB --feature-type gene
$ pantools retrieve_features -dp pecto_DB --ft mRNA

Output files

For each genome a FASTA file containing the retrieved features will be
stored in the database directory. For example, genes.1.fasta contains
all the genes annotated in genome 1.

Footnotes

Read mapping

Map

Map single or paired-end short reads to one or multiple genomes in the
pangenome. One SAM or BAM file is generated for each genome included in
the analysis.

Required arguments

--database_path/-dp Path to the pangenome database.

-1 The first short-read archive in FASTQ format, which can be
gz/bz2 compressed. This file can be precessed interleaved by -il
option.

--genome-numbers/-gn A text file containing genome numbers to
map reads against in each line.

Optional arguments

-2 The second short-read archive in FASTQ format, which can be
gz/bz2 compressed.

--out-format/-of SAM BAM none Writes the alignment
files in BAM or SAM format or don’t write any output files.

--output-path/-op (default value: Database path determined
by -dp) : Path to the output files.

--threads/-tn (default value: 1) : The number of parallel
working threads.

--interleaved/-il Process the fastq file as an interleaved
paired-end archive.

--raw-abundance-file/-raf The mapping_summary.txt file from
a previous mapping run (random-best competitive mode) for a better
estimation of coverage in a metagenomic setting.

--alignment-mode or -am The alignment mode:

-1 : Competitive, none-bests

-2 : Competitive, random-best

-3 : Competitive, all-bests

1 : Normal, none-bests

2 : Normal, random-best (default)

3 : Normal, all-bests

0 : Normal, all-hits

Optional arguments that influence the mapping sensitivity

--very-fast/--fast/--sensitive/--very-sensitive Four
settings that automatically set the parameters controlling the
sensitivity, ranging from least to most sensitive.

--min-mapping-identity*/-mmi (default value: 0.5, valid
range: [0..1)) : The minimum acceptable identity of the alignment.

--num-kmer-samples/-nks (default value: 15, valid
range: [1..r-k+1]) : The number of kmers sampled from read.

--min-hit-length/-mhl (default value: 13, valid range:
[10..100]) : The minimum acceptable length of alignment after
soft-clipping.

--max-alignment-length/-mal (default value: 1000, valid
range: [50..5000]) : The maximum acceptable length of alignment.

--max-fragment-length/-mfl (default value: 2000, valid
range: [50..5000]) : The maximum acceptable length of fragment.

--max-num-locations/-mnl (default value: 15, valid
range: [1..100]) : The maximum number of location of candidate hits
to examine.

--alignment-band/-ab (default value: 5, valid range:
[1..100]) : The length of bound of banded alignment.

--clipping-stringency/-ci (default value: 1) : The
stringency of soft-clipping.

0 : no soft clipping

1 : low

2 : medium

3 : high

Example input files

FASTQ file

@SRR13153715.1 1/1
TGGTCATACAGCAAAGCATAATTGTCACCATTACTATGGCAATCAAGCCAGCTATAAAACCTAGCCAAATGTACCATGGCCATTTTATATACTGCTCATACTTTCCAAGTTCTTGGAGATCGAT
+
EEEEEEEEEEEEEEEAEEEE/EEEEE/AEEEEEEEEEEEEEE/EE/EEE/<EEEEEEE/EEEEEEEEEEEEEAEEEEEAEEEEEAEEAEEEEEEA<AAAEEAEEA<EE/EEEEAEAEA/EEAA/

Genome numbers file

1
2
5

Example commands

$ pantools map -dp arabidopsis_DB -1 ERR031564_1.fastq --reference 1-5
$ pantools map -dp arabidopsis_DB -1 ERR031564_1.fastq -gn genome_numbers.txt
$ pantools map -dp arabidopsis_DB -1 interleaved_reads.fastq --interleaved -gn genome_numbers.txt
$ pantools map -dp arabidopsis_DB -1 ERR031564_1.fastq -2 ERR031564_2.fastq -gn genome_numbers.txt

Output files

	mapping_summary.txt, number of mapped and unmapped reads per
genome

	One SAM or BAM file is generated for each genome included in the
analysis.

Footnotes

Querying the pangenome

Cypher is Neo4j’s graph query language that lets you ask specific
questions or retrieve data from the graph database. The Cypher query
language depicts patterns of nodes and relationships and filters those
patterns based on labels and properties. While using node and
relationship patterns in databases queries may seem a little daunting, it
is easy to pick up! This page contains some example queries to help you
get started. Feel free to email us if you have any question regarding
Cypher queries.

More information on Neo4j and the Cypher language:

Neo4j Cypher Manual v3.5#1

Neo4j Cypher Refcard#2

Neo4j API#3

Match and return 100 nucleotide nodes

MATCH (n:nucleotide) RETURN n LIMIT 100

Find all the genome nodes

MATCH (n:genome) RETURN n

Retrieve the pangenome node

MATCH (n:pangenome) RETURN n

Match and return 100 genes

MATCH (g:gene) RETURN g LIMIT 100

Match and return 100 genes and order them by length

MATCH (g:gene) RETURN g ORDER BY g.length DESC LIMIT 100

The same query as before but results are now returned in a table

MATCH (g:gene) RETURN g.name, g.address, g.length ORDER BY g.length DESC LIMIT 100

Return genes which are between 100 and 250 bp. This can also be
applied to other features such as exons introns or CDS.

MATCH (g:gene) where g.length > 100 AND g.length < 250 RETURN * LIMIT 100

Find genes located on first genome

MATCH (g:gene) WHERE g.address[0] = 1 RETURN * LIMIT 100

Find genes located on first genome and first sequence

MATCH (g:gene) WHERE g.address[0] = 1 AND g.address[1] = 1 RETURN * LIMIT 100

Obtain genes between 100 and 250 nucleotides

MATCH (g:gene) where g.length > 100 AND g.length < 250 RETURN *

Return pfam identifiers for genes between 100 and 250 nucleotides
long

match (n:mRNA)--(m:pfam) where n.length > 100 and n.length < 150 return m.id

Return all genes for a specific contig and count them

MATCH (n:gene) WHERE n.address[0] = 1 and n.address[1] = 1 RETURN count(n)

Return all genes genes between 1000-1500 nucleotides and order them by
length

MATCH (n:gene) WHERE n.length > 1000 and n.length < 1500 RETURN n order by n.length DESC

Returns the homology group matching your gene of interest

MATCH (n:homology_group)--(m:mRNA)--(g:gene) WHERE g.name = 'GENE_NAME' RETURN *

Returns the genes of genome 1 that don’t have a homolog in a the other
genome

MATCH (n:homology_group)--(m:mRNA)--(g:gene) where n.num_members = 1 and g.genome = 1 RETURN g

Retrieve unique GO identifiers for mRNA’s with a signal peptide

MATCH (m:mRNA)--(g:GO) where m.signalp_signal_peptide = true RETURN DISTINCT m.id, g.id

Return all sequence nodes for a specific contig

MATCH (n)-[r]->() WHERE exists (r.'a1_1') and (n:degenerate or n:node) RETURN id(n), n.sequence , r.'a1_1'

Return all sequence nodes for a specific contig within the range of
position 1000 and 2000

MATCH (n)-[r]->() WHERE exists (r.'a1_1') and (n:degenerate or n:node) and r.'a1'_1[0] > 1000 and r.'a1_1'[0] < 2000 RETURN id(n), n.sequence, r.'a1_1'

Find SNP bubbles in the graph. For simplification we only use the FF
relation

MATCH p= (n:nucleotide) -[:FF]-> (a1)-[:FF]->(m:nucleotide) <-[:FF]-(b1) <-[:FF]- (n) return * limit 50

Footnotes

	#1

	https://neo4j.com/docs/developer-manual/3.5/cypher/

	#2

	http://neo4j.com/docs/cypher-refcard/3.5/

	#3

	https://neo4j.com/developer/

Differences between pangenome and panproteome

PanTools offers functionalities to build and analyze a pangenome or
panproteome.

A pangenome is constructed from genome and annotation files. First,
genome sequences are k-merized and compressed into a De Bruijn graph.
Genes and other annotation features from annotation files are integrated
into the pangenome as ‘gene’, ‘mRNA’ and ‘CDS’ nodes. Gene start and
stop positions are annotated in the graph as relationships and connect
the annotation layer to the nucleotide layer. The protein sequences can
be clustered into homology groups and connect homologous proteins from
different genomes.

A panproteome is built from protein sequences only, ignoring the
underlying genome structure. Again, the protein sequences are clustered
into homology groups which serve as main input for many functionalities.

In addition to the single layer in panproteomes and three layers in
pangenomes, a functional layer can be included in both databases. This
layer consists of multiple functional annotation databases (e.g. GO,
PFAM) and connects proteins with a shared function.

Since there is only a protein layer and functional layer present in
panproteomes, not all functions can be utilized. See the table below for
which functions can be used for pangenomes and panproteomes.

[image: _images/layers.png]

Fig. 8 Schematic of genome, annotation, and protein layer of a pangenome
database. Figure taken from Efficient inference of homologs in large
eukaryotic pan-proteomes

Available functions

Construct pangenome

	Function

	Pangenome

	Panproteome

	Build pangenome

	YES

	NO

	Build panproteome

	NO

	YES

	Add annotations

	YES

	NO

	Add genomes

	YES

	NO

	Group

	YES

	YES

	Optimal grouping

	YES

	YES

	Change grouping

	YES

	YES

	BUSCO protein

	YES

	YES

	Add phenotype

	YES

	YES

	Add functional annotations

	YES

	YES

	Add antiSMASH

	YES

	NO

	Remove nodes

	YES

	YES

	Move or remove grouping

	YES

	YES

Pangenome characterization

	Function

	Pangenome

	Panproteome

	Statistics

	YES

	YES

	Gene classification

	YES

	YES

	Core unique thresholds

	YES

	YES

	Grouping overview

	YES

	YES

	Pangenome size genes

	YES

	YES

	Pangenome size k-mers

	YES

	NO

	K-mer classification

	YES

	NO

	Functional classification

	YES

	YES

	Functional annotation overview

	YES

	YES

Explore the pangenome

	Function

	Pangenome

	Panproteome

	Locate genes

	YES

	NO

	mRNAs connected to function

	YES

	NO

	Find gene

	YES

	NO

	GO enrichment

	YES

	YES

	Show GO

	YES

	YES

	Compare GO

	YES

	YES

	Compare BGC

	YES

	NO

	Alignment of homology group

	YES

	YES

	Alignment of multiple homology groups

	YES

	YES

	Alignment of genomic regions

	YES

	NO

	Order matrix

	YES

	YES

	Rename matrix

	YES

	YES

	Retrieve genomes

	YES

	NO

	Retrieve regions

	YES

	NO

	Retrieve features

	YES

	NO

Phylogeny

	Function

	Pangenome

	Panproteome

	Core SNP tree

	YES

	YES

	K-mer distance tree

	YES

	NO

	Gene distance tree

	YES

	YES

	ANI tree

	YES

	NO

	MLSA

	YES

	NO

	Rename phylogeny

	YES

	YES

	Create tree template

	YES

	YES

Read mapping

	Function

	Pangenome

	Panproteome

	Map

	YES

	NO

Footnotes

Part 1. Install PanTools

For instructions on how to install PanTools,
see Installing and configuring the required software.

Footnotes

Part 2. Build your own pangenome using PanTools

To demonstrate the main functionalities of PanTools we use a small
chloroplasts dataset to avoid long construction times.

	Genome

	Chloroplast genome

	Accession

	Length

	Genes

	tRNAs

	1

	Cucumis sativus (cucumber)

	NC_007144.1#1

	155,293 bp

	85

	37

	2

	Oryza sativa Indica 93-11 (rice)

	NC_008155.1#2

	134,496 bp

	100

	40

	3

	Solanum lycopersicum (tomato)

	NC_007898.3#3

	155,461 bp

	87

	45

	4

	Solanum tuberosum (potato)

	NC_008096.2#4

	155,296 bp

	84

	45

	5

	Zea mays (maize)

	NC_001666.2#5

	140,384 bp

	111

	38

Download the chloroplast fasta and gff files
here#6
or via wget.

$ wget http://bioinformatics.nl/pangenomics/tutorial/chloroplasts.tar.gz
$ tar -xvzf chloroplasts.tar.gz #unpack the archive

We assume a PanTools alias was set during the
installation. This allows PanTools
to be executed with pantools rather than
pantools/target/pantools-3.4.0.jar. If you don’t have an alias, either
set one or replace the pantools command with the full path to the .jar
file in the tutorials.

BUILD, ANNOTATE and GROUP

We start with building a pangenome using four of the five chloroplast
genomes. For this you need a text file which directs PanTools to the
FASTA files. Call your text file genome_locations.txt and include
the following lines:

YOUR_PATH/C_sativus.fasta
YOUR_PATH/O_sativa.fasta
YOUR_PATH/S_lycopersicum.fasta
YOUR_PATH/S_tuberosum.fasta

Make sure that ‘YOUR_PATH’ is the full path to the input files! Then
run PanTools with the build_pangenome
function and include the text file

$ pantools build_pangenome -dp chloroplast_DB -gf genome_locations.txt

Did the program run without any error messages? Congratulations, you’ve
built your first pangenome! If not? Make sure your Java version is up to
date and kmc is executable. The text file should only contain full paths
to FASTA files, no additional spaces or empty lines.

Adding additional genomes

PanTools has the ability to add additional genomes to an already
existing pangenome. To test the function of PanTools, prepare a text
file containing the path to the Maize chloroplast genome. Call your
text file fifth_genome_location.txt and include the following
line to the file:

YOUR_PATH/Z_mays.fasta

Run PanTools on the new text file and use the
add_genomes function

$ pantools add_genomes -dp chloroplast_DB -gf fifth_genome_location.txt

Adding annotations
To include gene annotations to the pangenome, prepare a text file
containing paths to the GFF files. Call your text file
annotation_locations.txt and include the following lines into the
file:

1 YOUR_PATH/C_sativus.gff3
2 YOUR_PATH/O_sativa.gff3
3 YOUR_PATH/S_lycopersicum.gff3
4 YOUR_PATH/S_tuberosum.gff3
5 YOUR_PATH/Z_mays.gff3

Run PanTools using the
add_annotations function and include
the new text file

$ pantools add_annotations -dp chloroplast_DB -af annotation_locations.txt -ca

PanTools attached the annotations to our nucleotide nodes so now we can
cluster them.

Homology grouping

PanTools can infer homology between the protein sequences of a
pangenome and cluster them into homology groups. Multiple parameters
can be set to influence the sensitivity but for now we use the
group functionality with default
settings.

$ pantools group -dp chloroplast_DB

Adding phenotypes (requires PanTools v3)

Phenotype values can be Integers, Double, String or Boolean values.
Create a text file phenotypes.txt.

Genome,Solanum
1,false
2,false
3,true
4,true
5,false

And use add_phenotypes to add the
information to the pangenome.

$ pantools add_phenotypes -dp chloroplast_DB -ph phenotypes.txt

RETRIEVE functions

Now that the construction is complete, lets quickly validate if the
construction was successful and the database can be used. To retrieve
some genomic regions, prepare a text file containing genomic
coordinates. Create the file regions.txt and include the following
for each region: genome number, contig number, start and stop position
and separate them by a single space

1 1 200 500
2 1 300 700
3 1 1 10000
3 1 1 10000 -
4 1 9999 15000
5 1 100000 110000

Now run the retrieve_regions function
and include the new text file

$ pantools retrieve_regions -dp chloroplast_DB --regions-file regions.txt

Take a look at the extracted regions that are written to the
chloroplast_DB/retrieval/regions/ directory.

To retrieve entire genomes, prepare a text file genome_numbers.txt
and include each genome number on a separate line in the file

1
3
5

Use the retrieve_regions function again but include the new text
file

$ pantools retrieve_regions -dp chloroplast_DB -rf genome_numbers.txt

Genome files are written to same directory as before. Take a look at one
of the three genomes you have just retrieved.

In part 3 of the tutorial we explore the
pangenome you just built using the Neo4j browser and the Cypher language.

Footnotes

	#1

	https://www.ncbi.nlm.nih.gov/nuccore/NC_007144.1/

	#2

	https://www.ncbi.nlm.nih.gov/nuccore/NC_008155.1/

	#3

	https://www.ncbi.nlm.nih.gov/nuccore/NC_007898.3/

	#4

	https://www.ncbi.nlm.nih.gov/nuccore/NC_008096.2/

	#5

	https://www.ncbi.nlm.nih.gov/nuccore/NC_001666.2/

	#6

	http://bioinformatics.nl/pangenomics/tutorial/chloroplasts.tar.gz

Part 3. Explore the pangenome using the Neo4j browser

Did you skip part 2 of the tutorial or were you
unable to build the chloroplast pangenome? Download the pre-constructed
pangenome
here#1
or via wget.

$ wget http://bioinformatics.nl/pangenomics/tutorial/chloroplast_DB.tar.gz
$ tar -xvzf chloroplast_DB.tar.gz

Configuring Neo4j

Set the full path to the chloroplast pangenome database by opening
neo4j.conf (’neo4j-community-3.5.30/conf/neo4j.conf’) and include the
following line in the config file. Please make sure there is always only
a single uncommented line with ‘dbms.directories.data’.

#dbms.directories.data=/YOUR_PATH/any_other_database
dbms.directories.data=/YOUR_PATH/chloroplast_DB

Allowing non-local connections

To be able to run Neo4j on a server and have access to it from
anywhere, some additional lines in the config file must be changed.

	Uncomment the four following lines in
neo4j-community-3.5.30/conf/neo4j.conf.

	Replace 7686, 7474, and 7473 by three different numbers that are not
in use by other people on your server. In this way, everyone can have
their own database running at the same time.

#dbms.connectors.default_listen_address=0.0.0.0
#dbms.connector.bolt.listen_address=:7687
#dbms.connector.http.listen_address=:7474
#dbms.connector.https.listen_address=:7473

Lets start up the Neo4j server!

$ neo4j start

Start Firefox (or a web browser of your own preference) and let it run
on the background.

$ firefox &

In case you did not change the config to allow non-local connections,
browse to http://localhost:7474. Whenever you did change the config
file, go to server_address:7474, where 7474 should be replaced with the
number you chose earlier.

If the database startup was successful, a login terminal will appear in
the webpage. Use ‘neo4j’ both as username and password. After logging
in, you are requested to set a new password.

Exploring nodes and edges in Neo4j

Go through the following steps to become proficient in using the Neo4j
browser and the underlying PanTools data structure. If you have any
difficulty trouble finding a node, relationship or any type of
information, download and use this visual
guide#2.

	Click on the database icon on the left. A menu with all node types
and relationship types will appear.

	Click on the ‘gene’ button in the node label section. This
automatically generated a query. Execute the query.

	The LIMIT clause prevents large numbers of nodes popping up to
avoid your web browser from crashing. Set LIMIT to 10 and execute the
query.

	Hover over the nodes, click on them and take a look at the values
stored in the nodes. All these features (except ID) were extracted
from the GFF annotation files. ID is an unique number automatically
assigned to nodes and relationships by Neo4j.

	Double-click on the matK gene node, all nodes with a connection
to this gene node will appear. The nodes have distinct colors as
these are different node types, such as mRNA, CDS,
nucleotide. Take a look at the node properties to observe that
most values and information is specific to a certain node type.

	Double-click on the matK mRNA node, a homology_group node
should appear. These type of nodes connect homologous genes in the
graph. However, you can see this gene did not cluster with any other
gene.

	Hover over the start relation of the matK gene node. As you
can see information is not only stored in nodes, but also in
relationships! A relationship always has a certain direction, in
this case the relation starts at the gene node and points to a
nucleotide node. Offset marks the location within the node.

	Double-click on the nucleotide node at the end of the ‘start’
relationship. An in- and outgoing relation appear that connect to
other nucleotide nodes. Hover over both the relations and compare
them. The relations holds the genomic coordinates and shows this
path only occurs in contig/sequence 1 of genome 1.

	Follow the outgoing FF-relationship to the next nucleotide node
and expand this node by double-clicking. Three nodes will pop up
this time. If you hover over the relations you see the coordinates
belong to other genomes as well. You may also notice the
relationships between nucleotide nodes is always a two letter
combination of F (forward) and R (reverse) which state if a sequence
is reverse complemented or not. The first letter corresponds to the
sequence of the node at the start of the relation where the second
letters refers to the sequence of the end node.

	Finally, execute the following query to call the database scheme to
see how all node types are connected to each other: CALL
db.schema(). The schema will be useful when designing your own
queries!

Query the pangenome database using CYPHER

Cypher is a declarative, SQL-inspired language and uses ASCII-Art to
represent patterns. Nodes are represented by circles and relationships
by arrows.

	The MATCH clause allows you to specify the patterns Neo4j will
search for in the database.

	With WHERE you can add constraints to the patterns described.

	In the RETURN clause you define which parts of the pattern to
display.

Cypher queries

Match and return 100 nucleotide nodes

MATCH (n:nucleotide) RETURN n LIMIT 100

Find all the genome nodes

MATCH (n:genome) RETURN n

Find the pangenome node

MATCH (n:pangenome) RETURN n

Match and return 100 genes

MATCH (g:gene) RETURN g LIMIT 100

Match and return 100 genes and order them by length

MATCH (g:gene) RETURN g ORDER BY g.length DESC LIMIT 100

The same query as before but results are now returned in a table

MATCH (g:gene) RETURN g.name, g.address, g.length ORDER BY g.length DESC LIMIT 100

Return genes which are longer as 100 but shorter than 250 bp (this
can also be applied to other features such as exons introns or CDS)

MATCH (g:gene) where g.length > 100 AND g.length < 250 RETURN * LIMIT 100

Find genes located on first genome

MATCH (g:gene) WHERE g.address[0] = 1 RETURN * LIMIT 100

Find genes located on first genome and first sequence

MATCH (g:gene) WHERE g.address[0] = 1 AND g.address[1] = 1 RETURN * LIMIT 100

Homology group queries

Return 100 homology groups

MATCH (h:homology_group) RETURN h LIMIT 100

Match homology groups which contain two members

MATCH (h:homology_group) WHERE h.num_members = 2 RETURN h

Match homology groups and ‘walk’ to the genes and corresponding start
and end node

MATCH (h:homology_group)-->(f:feature)<--(g:gene)-->(n:nucleotide) WHERE h.num_members = 2 RETURN * LIMIT 25

Turn off autocomplete by clicking on the button on the bottom right. The
graph falls apart because relations were not assigned to variables.

The same query as before but now the relations do have variables

MATCH (h:homology_group)-[r1]-> (f:feature) <-[r2]-(g:gene)-[r3]-> (n:nucleotide) WHERE h.num_members = 2 RETURN * LIMIT 25

When you turn off autocomplete again only the ‘is_similar_to’ relation
disappears since we did not call it

Find homology group that belong to the rpoC1 gene

MATCH (n:homology_group)--(m:mRNA)--(g:gene) WHERE g.name = 'rpoC1' RETURN *

Find genes on genome 1 which don’t show homology

MATCH (n:homology_group)--(m:mRNA)--(g:gene) WHERE n.num_members = 1 and g.genome = 1 RETURN *

Structural variant detection

Find SNP bubbles (for simplification we only use the FF relation)

MATCH p= (n:nucleotide) -[:FF]-> (a1)-[:FF]->(m:nucleotide) <-[:FF]-(b1) <-[:FF]- (n) return * limit 50

The same query but returning the results in a table

MATCH (n:nucleotide) -[:FF]-> (a1)-[:FF]->(m:nucleotide) <-[:FF]-(b1) <-[:FF]- (n) return a1.length,b1.length, a1.sequence, b1.sequence limit 50

Functions such as count(), sum() and stDev() can be used in
a query.

The same SNP query but count the hits instead of displaying them

MATCH p= (n:nucleotide) -[:FF]-> (a1)-[:FF]->(m:nucleotide) <-[:FF]-(b1) <-[:FF]- (n) return count(p)

Hopefully you know have some feeling with the Neo4j browser and cypher
and you’re inspired to create your own queries!

When you’re done working in the browser, close the database (by using
the command line again).

$ neo4j stop

More information on Neo4j and the cypher language:

Neo4j Cypher Manual v3.5#3

Neo4j Cypher Refcard#4

Neo4j API#5

In part 4 of the tutorial we explore some of the
functionalities to analyze the pangenome.

Footnotes

	#1

	http://bioinformatics.nl/pangenomics/tutorial/chloroplast_DB.tar.gz

	#2

	http://www.bioinformatics.nl/pangenomics/tutorial/neo4j_browser.tar.gz

	#3

	https://neo4j.com/docs/developer-manual/3.5/cypher/

	#4

	http://neo4j.com/docs/cypher-refcard/3.5/

	#5

	https://neo4j.com/developer/

Part 4. Characterization

Part 4 preparation

PanTools v3 is required to follow this part of the tutorial. In
addition, MAFFT and R (and a few packages) need to be installed and set
to your $PATH. Everything should already be correctly installed if you
use the conda environment. Validate if the tools are executable by using
the following commands.

$ Rscript --help
$ mafft -h

We assume a PanTools alias was set during the
installation. This allows PanTools
to be executed with pantools rather than
pantools/target/pantools-3.4.0.jar. If you don’t have an alias, either
set one or replace the pantools command with the full path to the .jar
file in the tutorials.

Input data

	Genome

	Name

	Accession

	Length

	Sequences

	Genes

	1

	
	odoriferum Q166

	GCF_002904195.1#1

	5.09 Mb

	66

	4510

	2

	
	fontis M022

	GCF_000803215.1#2

	4.15 Mb

	107

	3723

	3

	
	polaris S4.16.03.2B

	GCF_003595035.1#3

	4.86 Mb

	65

	4442

	4

	
	brasiliense S2

	GCF_000808375.1#4

	4.84 Mb

	37

	4367

	5

	
	brasiliense Y49

	GCF_000808115.1#5

	4.70 Mb

	31

	4231

	6

	
	dadantii 3937

	GCF_000147055.1#6

	4.92 Mb

	1

	4281

To demonstrate how to use the PanTools functionalities we use a small
dataset of six bacteria to avoid long runtimes. Download a
pre-constructed pangenome or test your new skills and construct a
pangenome yourself using the fasta and gff files.

Option 1: Download separate genome and annotation files

$ wget http://bioinformatics.nl/pangenomics/tutorial/pecto_dickeya_input.tar.gz
$ tar -xvzf pecto_dickeya_input.tar.gz
$ gzip -d pecto_dickeya_input/annotations/*
$ gzip -d pecto_dickeya_input/genomes/*
$ gzip -d pecto_dickeya_input/functions/*

$ pantools build_pangenome -dp pecto_dickeya_DB -gf pecto_dickeya_input/genomes.txt
$ pantools add_annotations -dp pecto_dickeya_DB -af pecto_dickeya_input/annotations.txt -ca
$ pantools group -dp pecto_dickeya_DB -rn 4 -tn 10

Option 2: Download the pre-constructed pangenome

$ wget http://bioinformatics.nl/pangenomics/tutorial/pecto_dickeya_DB.tar.gz
$ tar -xvzf pecto_dickeya_DB.tar.gz

Adding phenotype/metadata to the pangenome

Before starting with the analysis, we will add some phenotype data to
the pangenome. Phenotypes allow you to find similarities for a group of
genomes sharing a phenotype as well as identifying variation between
different phenotypes. Below is a textfile with data for three
phenotypes. The third phenotype, low_temperature, is in this case a
made up example! It states whether the strain is capable of growing on
(extreme) low temperatures. The phenotype file can be found inside the
database directory or create a new file using the text from the box
below. Add the phenotype information to the pangenome using
add_phenotype.

Genome, species, strain_name, low_temperature
1,P. odoriferum,P. odoriferum Q166, false
2,P. fontis, P. fontis M022, true
3,P. polaris,P. polaris S4.16.03.2B, false
4,P. brasiliense, P. brasiliense S2, true
5,P. brasiliense, P. brasiliense Y49, false
6,D. dadantii, D. dadantii 3937,?

$ pantools add_phenotype -dp pecto_dickeya_DB -ph pecto_dickeya_input/phenotypes.txt

Metrics and general statistics

After building or uncompressing the pangenome, run the
metrics functionality to produce various
statistics that should verify an errorless construction.

$ pantools metrics -dp pecto_dickeya_DB

Open metrics_per_genome.csv with a spreadsheet tool (Excel,
Libreoffice, Google sheets) and make sure the columns are split on
commas. You may easily notice the many empty columns in this table as
these type of annotations or features are not included in the database
(yet). Functional annotations are incorporated later in this tutorial.
Columns for features like exon and intron will remain empty as bacterial
coding sequences are not interrupted.

Gene classification

With the gene_classification
functionality you are able to organize the gene repertoire into the
core, accessory or unique part of the pangenome.

	Core, a gene is present in all genomes

	Unique, a gene is present in a single genome

	Accessory, a gene is present in some but not all genomes

$ pantools gene_classification -dp pecto_dickeya_DB

[image: _images/classify_table.png]

Take a look in gene_classification_overview.txt. Here you can find
the number of classified homology groups and genes on a pangenome level
but also for individual genomes.

Open additional_copies.csv with a spreadsheet tool. This file can be
useful to identify duplicated genes in relation to other genomes.

The default criteria to call a group core is presence in all genomes
where unique is only allowed to be present in one genome. These two
categories are highly influenced by annotation quality, especially in
large pangenomes. Luckily, the threshold for core and unique groups can
easily be adjusted. Let’s consider genes to be core when present in only
five of the six genomes by setting the --core-threshold argument.

$ pantools gene_classification -dp pecto_dickeya_DB --core-threshold 85

Look in gene_classification_overview.txt again to observe the
increase of core groups/genes at the cost of accessory groups.

For this pangenome, the Dickeya genome is considered an outgroup to
the five Pectobacterium genomes. While this outgroup is needed to root
and analyze phylogenetic trees (tutorial part 5), it affects the number
classified groups for the all other genomes. Use --reference or
--skip to exclude the Dickeya genome.

$ pantools gene_classification -dp pecto_dickeya_DB --reference 1,2,3,4,5
$ pantools gene_classification -dp pecto_dickeya_DB --skip 6

Take a look in gene_classification_overview.txt one more time to
examine the effect of excluding this genome. The total number of groups
in the analysis is lower now but the number of core and unique genes
have increased for the five remaining genomes.

When phenotype information is used in the analysis, three additional
categories can be assigned to a group:

	Shared, a gene present in all genomes of a phenotype

	Exclusive, a gene is only present in a certain phenotype

	Specific, a gene present in all genomes of a phenotype and is
also exclusive

Include a --phenotype argument to find genes that are exclusive for
a certain species.

$ pantools gene_classification -dp pecto_dickeya_DB --phenotype species

Open gene_classification_phenotype_overview.txt to see the number of
classified groups for the species phenotype.

Open phenotype_disrupted.csv in a spreadsheet tool. This file
explains exactly why a homology groups is labeled as phenotype shared
and not specific.

Open phenotype_additional_copies.csv in a spreadsheet tool.
Similarly to phenotype_additional.csv this file shows groups where all
genomes of a certain phenotype have additional gene copies to (at least
one of) the other phenotypes.

Each time you run the
gene_classification function,
multiple files are created that contain node identifiers of a certain
homology group category. These files can be given to other PanTools
functions for a downstream analysis, for example, sequence alignment,
phylogeny, or GO enrichment. We will use one of the files later in this
tutorial.

Pangenome structure

With the previous functionality we identified the core, accessory and
unique parts of the pangenome. Now we will use the
pangenome_size_genes function to
observe how these numbers are reached by simulating the growth of the
pangenome. Simulating the growth helps explaining if a pangenome should
be considered open or closed. An pangenome is called open as long as a
significant number of new (unique) genes are added to the total gene
repertoire. The openness of a pangenome is usually tested using Heap’s
law. Heaps’ law (a power law) can be fitted to the number of new genes
observed when increasing the pangenome by one random genome. The formula
for the power law model is n = k x N-a, where n is the newly discovered
genes, N is the total number of genomes, and k and a are the fitting
parameters. A pangenome can be considered open when a < 1 and closed if
a > 1.

The outcome of the function can again be controlled through command line
arguments. Genomes can be excluded from the analysis with --skip.
You can set the number of iterations with --value. Because
iterations can be assigned to different threads, including multiple
threads with --threads is recommended.

$ pantools pangenome_structure_genes -dp pecto_dickeya_DB -tn 4

The current test set of six bacterial genomes is not representative of a
full-sized pangenome. Therefore we prepared the results for the
structure simulation on a set of 197 Pectobacterium genomes. The
runtime of the analysis using 10.000 loops and 24 threads was 1 minute
and 54 seconds. Download the files here, unpack the archive and take a
look at the files.

$ wget wget http://bioinformatics.nl/pangenomics/tutorial/pectobacterium_structure.tar.gz
$ tar -xvf pectobacterium_structure.tar.gz

Normally you still have to run the R scripts to create the output figures
and determine the openness of the pangenome.

cd pectobacterium_structure
$ Rscript pangenome_growth.R
$ Rscript gains_losses_median_and_average.R
$ Rscript heaps_law.R

Take a look at the plot. In core_accessory_unique_size.png, the
number of classified groups are plotted for any of the genome
combination that occured during the simulation. For the
core_accessory_size.png plots, the number of unique groups is
combined with accessory groups.

The gains_losses.png files display the average and mean group gain
and loss between different pangenome sizes. The line of the core starts
below zero, meaning for every random genome added, the core genome
decreases by a number of X genes.

 The alpha value of heaps' law is written to
 heaps_law_alpha.txt. Click here to reveal the result.

 With an alpha of 0.53 the Pectobacterium pangenome has an
 open structure, which is typical for many bacterial species due
 their extensive exchange of genetic information. Performing this
 analysis on a set of closely related animal or plant genomes usually
 results in a closed pangenome, indicating a limited gene pool.

 Part 5. Phylogeny

Part 5. Phylogeny

Part 5 preparation

Pantools v3 is required to follow this part of the tutorial. In
addition, MAFFT, FastTree, IQ-tree, R (and the ape R package) need to be
installed and set to your $PATH. Validate if the tools are executable by
using the following commands.

pantools version
Rscript --help
mafft -h
iqtree -h
fasttree -h

If you did not follow part 4 of the tutorial, download the
pre-constructed pangenome
here#1.

$ wget http://bioinformatics.nl/pangenomics/tutorial/pecto_dickeya_DB.tar.gz
$ tar -xvzf pecto_dickeya_DB.tar.gz

Adding phenotype/metadata to the pangenome

Before we construct the trees, we will add some phenotype data to the
pangenome. Once the we have a phylogeny, the information can be included
or be used to color parts of the tree. Below is a textfile with data for
three phenotypes. The third phenotype, low_temperature, is in this
case a made up example! It states whether the strain is capable of
growing on (extreme) low temperatures. The phenotype file can be found
inside the database directory, add the information to the pangenome by
using add_phenotype.

Genome, species, strain_name, low_temperature
1,P. odoriferum,P. odoriferum Q166, false
2,P. fontis, P. fontis M022, true
3,P. polaris,P. polaris S4.16.03.2B, false
4,P. brasiliense, P. brasiliense S2, true
5,P. brasiliense, P. brasiliense Y49, false
6,D. dadantii, D. dadantii 3937,?

$ pantools add_phenotype -dp pecto_dickeya_DB/ -ph pecto_dickeya_DB/phenotypes.txt

Constructing a phylogeny

In this tutorial we will construct three phylogenies, each based on a
different type of variation: SNPs, genes and k-mers. Take a look at the
phylogeny manuals to get an understanding how the three methods work and
how they differ from each other.

	phylogeny:core snp tree>

	phylogeny:gene distance tree>

	phylogeny:k-mer distance tree>

Core SNP phylogeny

The core SNP phylogeny will run various Maximum Likelihood models on
parsimony informative sites of single-copy orthologous sequences. A site
is parsimony-informative when there are at least two types of
nucleotides that occur with a minimum frequency of two. The informative
sites are automatically identified by aligning the sequences; however,
it does not know which sequences are single-copy orthologous. You can
identify these conserved sequences by running
gene_classification.

$ pantools gene_classification -dp pecto_dickeya_DB/ -ph species

Open gene_classification_overview.txt and take a look at statistics.
As you can see there are 2134 single-copy ortholog groups. Normally, all
of these groups are aligned to identify SNPs but for this tutorial we’ll
make a selection of only a few groups to accelerate the steps. You can
do this in two different ways:

Option 1: Open single_copy_orthologs.csv and remove all node
identifiers after the first 20 homology groups and save the file.

$ pantools core_snp_tree -dp pecto_dickeya_DB/ --mode ML -tn 4

Option 2: Open single_copy_orthologs.csv and select the first 20
homology_group node identifiers. Place them in a new file sco_groups.txt
and include this file to the function.

$ pantools core_snp_tree -dp pecto_dickeya_DB/ --mode ML -tn 4 -hm sco_groups.txt

The sequences of the homology groups are being aligned two consecutive
times. After the initial alignment, input sequences are trimmed based on
the longest start and end gap of the alignment. The parsimony
informative positions are taken from the second alignment and
concatenated into a sequence. When opening informative.fasta you can
find 6 sequences, the length of the sequences being the number of
parsimony-informative sites.

$ iqtree -nt 4 -s pecto_dickeya_DB/alignments/grouping_v1/core_snp_tree/informative.fasta -redo -bb 1000

IQ-tree generates several files, the tree that we later on in the
tutorial will continue with is called informative.fasta.treefile.
When examining the informative.fasta.iqtree file you can find the
best fit model of the data. This file also shows the number of sites
that were used, as sites with gaps (which IQ-tree does not allow) were
changed into singleton or constant sites.

Gene distance tree

To create a phylogeny based on gene distances (absence/presence), we can
simply execute the Rscript that was created by
gene_classification.

$ Rscript pecto_dickeya_DB/gene_classification/gene_distance_tree.R

The resulting tree is called gene_distance.tree.

K-mer distance tree

To obtain a k-mer distance phylogeny, the k-mers must first be counted
with the kmer_classification
function. Afterwards, the tree can be constructed by executing the
Rscript.

$ pantools kmer_classification -dp pecto_dickeya_DB/
$ Rscript pecto_dickeya_DB/kmer_classification/genome_kmer_distance_tree.R

The resulting tree is written to genome_kmer_distance.tree.

Renaming tree nodes

So far, we used three different types of distances (SNPs, genes,
k-mers), and two different methods (ML, NJ) to create three phylogenetic
trees. First, lets take a look at the text files. The
informative.fasta.treefile only contain genome numbers, bootstrap
values and branch lengths but is lacking the metadata. Examining
gene_distance.tree file also shows this information but the species
names as well, because we included this as a phenotype during
gene_classification.

Let’s include the strain identifiers to the core snp tree to make the
final figure more informative. Use the
rename_phylogeny function to rename
the tree nodes.

$ pantools rename_phylogeny -dp pecto_dickeya_DB --phenotype strain_name -if pecto_dickeya_DB/alignments/grouping_v1/core_snp_tree/informative.fasta.treefile

Take a look at informative.fasta_RENAMED.treefile, strain
identifiers have been added to the tree.

Visualizing the tree in iTOL

Go to https://itol.embl.de and click on “Upload a tree” under the
ANNOTATE box. On this page you can paste the tree directly into the
tree text: textbox or can click the button to upload the .newick
file.

[image: _images/tutorial_phylogeny1.png]

Basic controls ITOL

	The default way of visualizing a tree is the rectangular view.
Depending on the number of genomes, the circular view can be easier
to interpret. You can the view by clicking on the “Display Mode”
buttons.

	Increase the font size and branch width to improve readability

	When visualizing a Maximum likelihood (ML) tree, bootstrap values can
be displayed by clicking the “Display” button next to
Bootstrap/metadata in the Advanced tab of the Control window.
This enables you to visualize the values as text or symbol on the
branch. or by coloring the branch or adjusting the width.

[image: _images/tutorial_phylogeny2.png]

	When you have a known outgroup or one of the genomes is a clear
outlier in the tree, you should reroot the tree. Hover over the name,
click it so a pop-up menu appears. Click “tree structure” followed by
“Reroot the tree here”.

[image: _images/tutorial_phylogeny3.png]

	Clicking on the name of a node in the tree allows you to color the
name, branch, or background of that specific node.

	When you’re happy the way your tree looks, go to the Export tab of
the Control window. Select the desired output format, click on the
“Full image” button and export the file to a figure.

	Refresh the webpage to go back to the default view of your tree.

Create iTOL templates

In iTOL it is possible to add colors to the tree by coloring the
terminal nodes or adding an outer ring. The PanTools function
create_tree_template is able to
create templates that allows for easy coloring (with maximum of 20
possible colors). If the function is run without any additional
argument, templates are created for trees that only contain genome
numbers (e.g. k-mer distance tree). Here we want to color the (renamed)
core SNP tree with the ‘low_temperature’ phenotype. Therefore, the
--phenotype strain_name must be included to the function.

$ pantools create_tree_template -dp pecto_dickeya_DB # Run this command when the tree contains genome numbers only
$ pantools create_tree_template -dp pecto_dickeya_DB -ph strain_name

Copy the two low_temperature.txt files from the label/strain_name/ and
ring/strain_name/ directories to your personal computer. Click and move
the ring template file into the tree visualization webpage.

[image: _images/tutorial_phylogeny4.png]

The resulting tree should look this when: the tree is rooted with the
Dickeya genome, bootstrap values are displayed as text and the ring
color template was included.

[image: _images/tutorial_phylogeny_color.png]

Tree coloring is especially useful for large datasets. An example is
shown in the figure below, where members of the same species share a
color.

[image: _images/tutorial_phylogeny_tree.png]

Footnotes

	#1

	http://bioinformatics.nl/pangenomics/tutorial/pecto_dickeya_DB.tar.gz

 Index

Index

 Tutorial

Tutorial

	Installing and configuring the required software

	Construct pangenome

	Neo4j browser

	Characterization & exploration

	Phylogeny

Footnotes

 Part 6. Read mapping

Part 6. Read mapping

Soon!

Footnotes

_images/tutorial_phylogeny4.png

_images/tutorial_phylogeny_color.png
99

100

6 D. dadantii 3937

2 P. fontis M022 =

1 P. odoriferum Q166

3 P. polaris S4.16.03.2B
— 4 P. brasiliense S2 -

100

— 5 P. brasiliense Y49

_static/file.png

_images/tutorial_phylogeny_tree.png
Tree scale: 0.1

o
3
30 8 u
® 5 =] 8
2.8 20
E3o) o
523 g}
=23 ow
258 25
O SZEEEEE
g:((fj)“__‘smwwga:,
SOBTEEEEE
WO UCSTT T 5
SRBnTans
S AR~ ‘a'n;

P. brasiliense ny 3799
P. brasiliense F15¢
P. brasiliense NAK 383
P. brasiliense NAK éi%
P. brasiliense IPO 3

P. brasiliense NAK 223

P. brasiliense NAK 241

P. odoriferum Q32
P. odoriferum Q106
03.1C

| P. odoriferum NCPPB3841
| - 0doriferum Q3
: / / F Odoriferym NCPP|
p. brasiliense S4l AK 431 | ;
"p. brasiliense Ty 277
b, brasiiense Ty 243

P raSIens A 3L

b odoriferum Q47 B3839 T
9
O AT

- 0dorifep,
Iéj' odon‘fe,u,;:’ SSG
 Aquaticy, S6-2

44

se NAK 382

nse IPO 3g.

P. brasilien

_static/minus.png

_static/plus.png

_images/COG_abundance.png
eyl

y

B Accessor

B Core
B Unique

e

0

() o

(94,) @duepunqgy

_images/best_grouping.png
Proteins

100 -

10+

Relaxation mode

Type

== N

- FP

_images/bio_process.png
p below 0.01

biological_process

metabolic process

organic substance metabolic process
primary metabolic process

cellular process

transposition

oxidation-reduction process nitrogen compound metabolic process cellular metabolic process

DNA integration
transposition, DNA-mediated

DNA methylation on adenine

nav.xhtml

 Table of Contents

 		
 PanTools version 3.4.0

 		
 Installing and configuring the required software

 		
 Download PanTools

 		
 Set PanTools alias

 		
 Install Neo4j

 		
 Dependencies

 		
 Install dependencies using Conda

 		
 Manual installation of dependencies

 		
 Installing pre-commit hooks

 		
 Construct pangenome

 		
 Build pangenome

 		
 Required software

 		
 Required arguments

 		
 Optional arguments

 		
 Example input file

 		
 Example command

 		
 Relevant literature

 		
 Add annotations

 		
 Required arguments

 		
 Optional arguments

 		
 Example command

 		
 Output

 		
 Example input file

 		
 Select specific annotations for analysis

 		
 Grouping proteins

 		
 Group

 		
 Required software

 		
 Required arguments

 		
 Optional arguments

 		
 Optional arguments that influence the clustering sensitivity

 		
 Example commands

 		
 Output

 		
 Relevant literature

 		
 Optimal grouping

 		
 Required software

 		
 Required arguments

 		
 Optional arguments

 		
 Example commands

 		
 Output

 		
 Change grouping

 		
 Required arguments

 		
 Example command

 		
 Build panproteome

 		
 Required arguments

 		
 Example input file

 		
 Example command

 		
 Add genomes

 		
 Required software

 		
 Required arguments

 		
 Example input file

 		
 Example command

 		
 Add phenotypes

 		
 Required arguments

 		
 Optional argument

 		
 Example input file

 		
 Example command

 		
 Output

 		
 BUSCO

 		
 Required software

 		
 Required arguments

 		
 Optional arguments

 		
 Example commands

 		
 Output

 		
 Add functional annotations

 		
 Add functions

 		
 Functional databases

 		
 Required arguments

 		
 Optional arguments

 		
 Example command

 		
 Output

 		
 Example input files

 		
 Relevant literature

 		
 Add antiSMASH gene clusters

 		
 Required arguments

 		
 Optional arguments

 		
 Example input file

 		
 Example command

 		
 Removing data

 		
 Remove nodes

 		
 Remove phenotypes

 		
 Remove annotations

 		
 Move or remove grouping

 		
 Pangenome characterization

 		
 Pangenome metrics

 		
 Required argument

 		
 Optional arguments

 		
 Example commands

 		
 Output

 		
 Homology groups

 		
 Gene classification

 		
 Core unique thresholds

 		
 Grouping overview

 		
 Pangenome structure

 		
 Pangenome size genes

 		
 Pangenome size k-mers

 		
 K-mer classification

 		
 Required argument

 		
 Optional arguments

 		
 Example commands

 		
 Output

 		
 Functional annotations

 		
 Functional classification

 		
 Functional annotation overview

 		
 GO enrichment

 		
 Phylogeny

 		
 Core phylogeny

 		
 Required software

 		
 Required arguments

 		
 Optional arguments

 		
 Example commands

 		
 Output

 		
 K-mer distance tree

 		
 Output file

 		
 Consensus tree

 		
 Required software

 		
 Required arguments

 		
 Optional arguments

 		
 Example commands

 		
 Output

 		
 Relevant literature

 		
 Gene distance tree

 		
 Output file

 		
 ANI tree

 		
 Required software

 		
 Required argument

 		
 Optional arguments

 		
 Example command

 		
 Output

 		
 Find closest typestrain

 		
 Relevant literature

 		
 MLSA

 		
 Step 1 Search for genes

 		
 Step 2 Concatenate genes

 		
 Step 3 Run MLSA

 		
 Edit Phylogeny

 		
 Rename phylogeny

 		
 Reroot phylogeny

 		
 Create tree template

 		
 Multiple Sequence Alignments

 		
 Sequence alignments

 		
 Alignment of homology groups

 		
 Explore the pangenome

 		
 Gene locations

 		
 Required arguments

 		
 Optional arguments

 		
 Example command

 		
 Output files

 		
 Find genes

 		
 Find genes by name

 		
 Find genes by annotation

 		
 Find genes in region

 		
 Functional annotations

 		
 Show GO

 		
 Compare GO

 		
 Homology group information

 		
 Required arguments

 		
 Optional arguments

 		
 Example command

 		
 Output files

 		
 Sequence alignments

 		
 Matrix files

 		
 Order matrix

 		
 Rename matrix

 		
 Retrieve regions, genomes or features

 		
 Retrieve regions

 		
 Retrieve features

 		
 Read mapping

 		
 Map

 		
 Required arguments

 		
 Optional arguments

 		
 Optional arguments that influence the mapping sensitivity

 		
 Example input files

 		
 Example commands

 		
 Output files

 		
 Querying the pangenome

 		
 Differences between pangenome and panproteome

 		
 Available functions

 		
 Tutorial 1 - Install PanTools

 		
 Tutorial 2 - Construct pangenome

 		
 BUILD, ANNOTATE and GROUP

 		
 Adding additional genomes

 		
 Homology grouping

 		
 Adding phenotypes (requires PanTools v3)

 		
 RETRIEVE functions

 		
 Tutorial 3 - Neo4j browser

 		
 Configuring Neo4j

 		
 Exploring nodes and edges in Neo4j

 		
 Query the pangenome database using CYPHER

 		
 Cypher queries

 		
 Homology group queries

 		
 Structural variant detection

 		
 Tutorial 4 - Characterization

 		
 Part 4 preparation

 		
 Input data

 		
 Adding phenotype/metadata to the pangenome

 		
 Metrics and general statistics

 		
 Gene classification

 		
 Pangenome structure

 		
 Functional annotations

 		
 GO enrichment

 		
 Classifying functional annotations

 		
 Sequence alignment

 		
 Tutorial 5 - Phylogeny

 		
 Part 5 preparation

 		
 Adding phenotype/metadata to the pangenome

 		
 Constructing a phylogeny

 		
 Core SNP phylogeny

 		
 Gene distance tree

 		
 K-mer distance tree

 		
 Renaming tree nodes

 		
 Visualizing the tree in iTOL

 		
 Basic controls ITOL

 		
 Create iTOL templates

_images/core_unique_thresholds.png
Number of homology groups

20000

15000 -

10000 -

5000

Py
00000...
..
...
[]
[J
[]
. Category
e Core/Softcore
% e Unique/Cloud
[}
[]
[] ...
....
.....°00.o
o0e,
[]
0.00 0.25 0.50 0.75 1.00

Cut-off

_images/layers.png

_images/classify_table.png
Homology group

Phenotype 1

Phenotype 2

Phenotype 3

K-mer Definition

Function Gl G2 G3 G4 G5 G6 G7 G8 G9 G10G1l1G12
1 1 3 1 1 2 1 1 1 1 1 1 1 |Core
2 1 0 |1 1 1 1 1 O 0O 0 1 1 | Accessory
3 O o1 0 O O 0 O 0O O O O |Unigue
4 1 0 1 01 O 0O O 0O O O O |Phenotype exclusive
5 1 1 1 2 1 0O 0O O 0O O O O | Phenotype specific
7 1 1 1 1 2 o 1 2 2 |1 0 O | Phenotype shared

_images/color_templates.png
8 or less
phenotypes

Teal Navy Black
#469990 #000075 #000000

Brown Olive
#9A6324 #808000

Yellow Lime Blue

9 or more #fe119 #bfefds #4363d8
phenotypes

Pink Apricot Beige Mint Lavender White
#fabebe #ftd8b1 #fffac8 #aaffc3 #e6beff #fffff

_images/tutorial_phylogeny1.png
Upload a new tree

Tree name:

optional

Paste your tree into the box below, or select a file using the Tree file selector. You can also simply drag and drop the tree file onto the page (only a regular plain text file, not
QIIME QZA files